-
1
-
-
0031488996
-
Large time asymptotics for Brownian hitting densities of transient concave curves
-
ANDERSON, J. M. and PITT, L. D. (1997). Large time asymptotics for Brownian hitting densities of transient concave curves. J. Theoret. Probab. 10 921-934.
-
(1997)
J. Theoret. Probab.
, vol.10
, pp. 921-934
-
-
Anderson, J.M.1
Pitt, L.D.2
-
3
-
-
0035537290
-
The first exit time of Brownian motion from interior of a parabola
-
BAÑUELOS, R., DEBLASSIE, R. and SMITS, R. (2001). The first exit time of Brownian motion from interior of a parabola. Ann. Probab. 29 882-901.
-
(2001)
Ann. Probab.
, vol.29
, pp. 882-901
-
-
Bañuelos, R.1
DeBlassie, R.2
Smits, R.3
-
5
-
-
0000742242
-
Small ball estimates for Brownian motion under a weighted supnorm
-
BERTHET, P. and SHI, Z. (2000). Small ball estimates for Brownian motion under a weighted supnorm. Studia Sci. Math. Hungar. 36 275-289.
-
(2000)
Studia Sci. Math. Hungar.
, vol.36
, pp. 275-289
-
-
Berthet, P.1
Shi, Z.2
-
6
-
-
0000498245
-
Exit times of Brownian motion, harmonic majorization and Hardy spaces
-
BURKHOLDER, D. L. (1977). Exit times of Brownian motion, harmonic majorization and Hardy spaces. Adv. in Math. 26 182-205.
-
(1977)
Adv. in Math.
, vol.26
, pp. 182-205
-
-
Burkholder, D.L.1
-
7
-
-
0038076079
-
Quadratic functional and small ball probabilities for the m-fold integrated Brownian motion
-
CHEN, X. and LI, W. V. (2003). Quadratic functional and small ball probabilities for the m-fold integrated Brownian motion. Ann. Probab. 31 1052-1077.
-
(2003)
Ann. Probab.
, vol.31
, pp. 1052-1077
-
-
Chen, X.1
Li, W.V.2
-
8
-
-
0034337002
-
A functional LIL for symmetric stable processes
-
CHEN, X., KUELBS, J. and LI, W. V. (2000). A functional LIL for symmetric stable processes. Ann. Probab. 28 258-276.
-
(2000)
Ann. Probab.
, vol.28
, pp. 258-276
-
-
Chen, X.1
Kuelbs, J.2
Li, W.V.3
-
9
-
-
84968478877
-
First passage time and sojourn density for Brownian motion in space and the exact Hausdorff measure of the sample path
-
CIESIELSKI, Z. and TAYLOR, S. J. (1962). First passage time and sojourn density for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 434-450.
-
(1962)
Trans. Amer. Math. Soc.
, vol.103
, pp. 434-450
-
-
Ciesielski, Z.1
Taylor, S.J.2
-
12
-
-
0038433652
-
Slepian's inequality and commuting semigroups
-
Séminaire de Probabilités XXI. Springer, Berlin
-
DUDLEY, R. and STROOCK, D. (1987). Slepian's inequality and commuting semigroups. Séminaire de Probabilités XXI. Lecture Notes in Math. 1247 574-578. Springer, Berlin.
-
(1987)
Lecture Notes in Math.
, vol.1247
, pp. 574-578
-
-
Dudley, R.1
Stroock, D.2
-
13
-
-
0022023075
-
The first-passage density of a continuous Gaussian process to a general boundary
-
DURBIN, J. (1985). The first-passage density of a continuous Gaussian process to a general boundary. Appl. Probab. 22 99-122.
-
(1985)
Appl. Probab.
, vol.22
, pp. 99-122
-
-
Durbin, J.1
-
14
-
-
0001003734
-
The first-passage density of the Brownian motion process to a curved boundary, with an appendix by D. Williams
-
DURBIN, J. (1992). The first-passage density of the Brownian motion process to a curved boundary, with an appendix by D. Williams. J. Appl. Probab. 29 291-304.
-
(1992)
J. Appl. Probab.
, vol.29
, pp. 291-304
-
-
Durbin, J.1
-
16
-
-
0038094817
-
One-sided boundary crossing for processes with independent increments
-
GREENWOOD, P. E. and NOVIKOV, A. A. (1986). One-sided boundary crossing for processes with independent increments. Theory Probab. Appl. 31 221-232.
-
(1986)
Theory Probab. Appl.
, vol.31
, pp. 221-232
-
-
Greenwood, P.E.1
Novikov, A.A.2
-
17
-
-
0013198027
-
An absorption problem for several Brownian motions
-
Birkhäuser, Boston
-
KESTEN, H. (1992). An absorption problem for several Brownian motions. In Sem. Stochastic Process. 59-72. Birkhäuser, Boston.
-
(1992)
Sem. Stochastic Process.
, pp. 59-72
-
-
Kesten, H.1
-
18
-
-
0001461506
-
Metric entropy and the small ball problem for Gaussian measures
-
KUELBS, J. and LI, W. V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 133-157.
-
(1993)
J. Funct. Anal.
, vol.116
, pp. 133-157
-
-
Kuelbs, J.1
Li, W.V.2
-
19
-
-
0038433656
-
First exit times from moving boundaries for sums of independent random variables
-
LAI, T. L. (1977). First exit times from moving boundaries for sums of independent random variables. Ann. Probab. 5 210-221.
-
(1977)
Ann. Probab.
, vol.5
, pp. 210-221
-
-
Lai, T.L.1
-
20
-
-
0012685741
-
First exit time of a random walk from the bounds f(n)cg(n), with applications
-
LAI, T. L. and WIJSMAN, R. A. (1979). First exit time of a random walk from the bounds f(n)cg(n), with applications. Ann. Probab. 7 672-692.
-
(1979)
Ann. Probab.
, vol.7
, pp. 672-692
-
-
Lai, T.L.1
Wijsman, R.A.2
-
22
-
-
0003725238
-
Boundary crossing of Brownian motion: Its relation to the law of the iterated logarithm and to sequential analysis
-
Springer, New York
-
LERCHE, H. R. (1986). Boundary Crossing of Brownian Motion: Its Relation to the Law of the Iterated Logarithm and to Sequential Analysis. Lecture Notes in Statistics 40. Springer, New York.
-
(1986)
Lecture Notes in Statistics
, vol.40
-
-
Lerche, H.R.1
-
23
-
-
0033273817
-
Small deviations for Gaussian Markov processes under the sup-norm
-
LI, W. V. (1999). Small deviations for Gaussian Markov processes under the sup-norm. J. Theoret. Probab. 12 971-984.
-
(1999)
J. Theoret. Probab.
, vol.12
, pp. 971-984
-
-
Li, W.V.1
-
25
-
-
0033164054
-
Approximation, metric entropy and small ball estimates for Gaussian measures
-
LI, W. V. and LINDE, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab. 27 1556-1578.
-
(1999)
Ann. Probab.
, vol.27
, pp. 1556-1578
-
-
Li, W.V.1
Linde, W.2
-
26
-
-
70350344396
-
Gaussian processes: Inequalities, small ball probabilities and applications
-
Stochastic Processes: Theory and Methods. C. R. Rao and D. Shanbhag, eds. North-Holland, Amsterdam
-
LI, W. V. and SHAO, Q. M. (2001). Gaussian processes: Inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods. Handbook of Statistics (C. R. Rao and D. Shanbhag, eds.) 19 533-598. North-Holland, Amsterdam.
-
(2001)
Handbook of Statistics
, vol.19
, pp. 533-598
-
-
Li, W.V.1
Shao, Q.M.2
-
27
-
-
0038771550
-
Lower tail probabilities for Gaussian processes
-
To appear
-
LI, W. V. and SHAO, Q. M. (2002a). Lower tail probabilities for Gaussian processes. Ann. Probab. To appear.
-
(2002)
Ann. Probab.
-
-
Li, W.V.1
Shao, Q.M.2
-
28
-
-
0036012940
-
A normal comparison inequality and its applications
-
LI, W. V. and SHAO, Q. M. (2002b). A normal comparison inequality and its applications. Probab. Theory Related Fields 122 494-508.
-
(2002)
Probab. Theory Related Fields
, vol.122
, pp. 494-508
-
-
Li, W.V.1
Shao, Q.M.2
-
31
-
-
0001482627
-
Small deviations in a space of trajectories
-
MOGULSKII, A. A. (1974). Small deviations in a space of trajectories. Theory Probab. Appl. 19 726-736.
-
(1974)
Theory Probab. Appl.
, vol.19
, pp. 726-736
-
-
Mogulskii, A.A.1
-
32
-
-
0002269607
-
On estimates and asymptotic behavior of non-exit probabilities of a Wiener process to a moving boundary
-
NOVIKOV, A. A. (1979). On estimates and asymptotic behavior of non-exit probabilities of a Wiener process to a moving boundary. Mat. Sb. 38 495-505.
-
(1979)
Mat. Sb.
, vol.38
, pp. 495-505
-
-
Novikov, A.A.1
-
33
-
-
0038094820
-
Small deviations of Gaussian processes
-
NOVIKOV, A. A. (1981). Small deviations of Gaussian processes. Math. Notes 29 150-155.
-
(1981)
Math. Notes
, vol.29
, pp. 150-155
-
-
Novikov, A.A.1
-
34
-
-
0033426760
-
Approximations of boundary crossing probabilities for a Brownian motion
-
NOVIKOV, A., FRISHLING, V. and KORDZAKHIA, N. (1999). Approximations of boundary crossing probabilities for a Brownian motion. J. Appl. Probab. 36 1019-1030.
-
(1999)
J. Appl. Probab.
, vol.36
, pp. 1019-1030
-
-
Novikov, A.1
Frishling, V.2
Kordzakhia, N.3
-
35
-
-
0038094814
-
Probability bounds for first exits through moving boundaries
-
PORTNOY, S. (1978). Probability bounds for first exits through moving boundaries. Ann. Probab. 6 106-117.
-
(1978)
Ann. Probab.
, vol.6
, pp. 106-117
-
-
Portnoy, S.1
-
37
-
-
21444453887
-
Small ball probabilities for a Wiener process under weighted sup-norms, with an application to the supremum of Bessel local times
-
SHI, Z. (1996). Small ball probabilities for a Wiener process under weighted sup-norms, with an application to the supremum of Bessel local times. J. Theoret. Probab. 9 915-929.
-
(1996)
J. Theoret. Probab.
, vol.9
, pp. 915-929
-
-
Shi, Z.1
-
38
-
-
84944485006
-
The one sided barrier problem for Gaussian noise
-
SLEPIAN, D. (1962). The one sided barrier problem for Gaussian noise. Bell System Tech. J. 41 463-501.
-
(1962)
Bell System Tech. J.
, vol.41
, pp. 463-501
-
-
Slepian, D.1
-
39
-
-
84927465241
-
Some theorems concerning two-dimensional Brownian motion
-
SPITZER, F. (1958). Some theorems concerning two-dimensional Brownian motion. Trans. Amer. Math. Soc. 87 197.
-
(1958)
Trans. Amer. Math. Soc.
, vol.87
, pp. 197
-
-
Spitzer, F.1
-
40
-
-
0038094818
-
Brownian first exit from and sojourn over one-sided moving boundary and application
-
UCHIYAMA, K. (1980). Brownian first exit from and sojourn over one-sided moving boundary and application. Z. Wahrsch. Verw. Gebiete 54 75-116.
-
(1980)
Z. Wahrsch. Verw. Gebiete
, vol.54
, pp. 75-116
-
-
Uchiyama, K.1
|