메뉴 건너뛰기




Volumn 31, Issue 2, 2003, Pages 1078-1096

The first exit time of a Brownian motion from an unbounded convex domain

Author keywords

Asymptotic tail distribution; Bessel process; Brownian motion; Exit probabilities; Slepian's inequality

Indexed keywords


EID: 0038336041     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1048516546     Document Type: Article
Times cited : (51)

References (40)
  • 1
    • 0031488996 scopus 로고    scopus 로고
    • Large time asymptotics for Brownian hitting densities of transient concave curves
    • ANDERSON, J. M. and PITT, L. D. (1997). Large time asymptotics for Brownian hitting densities of transient concave curves. J. Theoret. Probab. 10 921-934.
    • (1997) J. Theoret. Probab. , vol.10 , pp. 921-934
    • Anderson, J.M.1    Pitt, L.D.2
  • 3
    • 0035537290 scopus 로고    scopus 로고
    • The first exit time of Brownian motion from interior of a parabola
    • BAÑUELOS, R., DEBLASSIE, R. and SMITS, R. (2001). The first exit time of Brownian motion from interior of a parabola. Ann. Probab. 29 882-901.
    • (2001) Ann. Probab. , vol.29 , pp. 882-901
    • Bañuelos, R.1    DeBlassie, R.2    Smits, R.3
  • 5
    • 0000742242 scopus 로고    scopus 로고
    • Small ball estimates for Brownian motion under a weighted supnorm
    • BERTHET, P. and SHI, Z. (2000). Small ball estimates for Brownian motion under a weighted supnorm. Studia Sci. Math. Hungar. 36 275-289.
    • (2000) Studia Sci. Math. Hungar. , vol.36 , pp. 275-289
    • Berthet, P.1    Shi, Z.2
  • 6
    • 0000498245 scopus 로고
    • Exit times of Brownian motion, harmonic majorization and Hardy spaces
    • BURKHOLDER, D. L. (1977). Exit times of Brownian motion, harmonic majorization and Hardy spaces. Adv. in Math. 26 182-205.
    • (1977) Adv. in Math. , vol.26 , pp. 182-205
    • Burkholder, D.L.1
  • 7
    • 0038076079 scopus 로고    scopus 로고
    • Quadratic functional and small ball probabilities for the m-fold integrated Brownian motion
    • CHEN, X. and LI, W. V. (2003). Quadratic functional and small ball probabilities for the m-fold integrated Brownian motion. Ann. Probab. 31 1052-1077.
    • (2003) Ann. Probab. , vol.31 , pp. 1052-1077
    • Chen, X.1    Li, W.V.2
  • 8
    • 0034337002 scopus 로고    scopus 로고
    • A functional LIL for symmetric stable processes
    • CHEN, X., KUELBS, J. and LI, W. V. (2000). A functional LIL for symmetric stable processes. Ann. Probab. 28 258-276.
    • (2000) Ann. Probab. , vol.28 , pp. 258-276
    • Chen, X.1    Kuelbs, J.2    Li, W.V.3
  • 9
    • 84968478877 scopus 로고
    • First passage time and sojourn density for Brownian motion in space and the exact Hausdorff measure of the sample path
    • CIESIELSKI, Z. and TAYLOR, S. J. (1962). First passage time and sojourn density for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 434-450.
    • (1962) Trans. Amer. Math. Soc. , vol.103 , pp. 434-450
    • Ciesielski, Z.1    Taylor, S.J.2
  • 12
    • 0038433652 scopus 로고
    • Slepian's inequality and commuting semigroups
    • Séminaire de Probabilités XXI. Springer, Berlin
    • DUDLEY, R. and STROOCK, D. (1987). Slepian's inequality and commuting semigroups. Séminaire de Probabilités XXI. Lecture Notes in Math. 1247 574-578. Springer, Berlin.
    • (1987) Lecture Notes in Math. , vol.1247 , pp. 574-578
    • Dudley, R.1    Stroock, D.2
  • 13
    • 0022023075 scopus 로고
    • The first-passage density of a continuous Gaussian process to a general boundary
    • DURBIN, J. (1985). The first-passage density of a continuous Gaussian process to a general boundary. Appl. Probab. 22 99-122.
    • (1985) Appl. Probab. , vol.22 , pp. 99-122
    • Durbin, J.1
  • 14
    • 0001003734 scopus 로고
    • The first-passage density of the Brownian motion process to a curved boundary, with an appendix by D. Williams
    • DURBIN, J. (1992). The first-passage density of the Brownian motion process to a curved boundary, with an appendix by D. Williams. J. Appl. Probab. 29 291-304.
    • (1992) J. Appl. Probab. , vol.29 , pp. 291-304
    • Durbin, J.1
  • 16
    • 0038094817 scopus 로고
    • One-sided boundary crossing for processes with independent increments
    • GREENWOOD, P. E. and NOVIKOV, A. A. (1986). One-sided boundary crossing for processes with independent increments. Theory Probab. Appl. 31 221-232.
    • (1986) Theory Probab. Appl. , vol.31 , pp. 221-232
    • Greenwood, P.E.1    Novikov, A.A.2
  • 17
    • 0013198027 scopus 로고
    • An absorption problem for several Brownian motions
    • Birkhäuser, Boston
    • KESTEN, H. (1992). An absorption problem for several Brownian motions. In Sem. Stochastic Process. 59-72. Birkhäuser, Boston.
    • (1992) Sem. Stochastic Process. , pp. 59-72
    • Kesten, H.1
  • 18
    • 0001461506 scopus 로고
    • Metric entropy and the small ball problem for Gaussian measures
    • KUELBS, J. and LI, W. V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 133-157.
    • (1993) J. Funct. Anal. , vol.116 , pp. 133-157
    • Kuelbs, J.1    Li, W.V.2
  • 19
    • 0038433656 scopus 로고
    • First exit times from moving boundaries for sums of independent random variables
    • LAI, T. L. (1977). First exit times from moving boundaries for sums of independent random variables. Ann. Probab. 5 210-221.
    • (1977) Ann. Probab. , vol.5 , pp. 210-221
    • Lai, T.L.1
  • 20
    • 0012685741 scopus 로고
    • First exit time of a random walk from the bounds f(n)cg(n), with applications
    • LAI, T. L. and WIJSMAN, R. A. (1979). First exit time of a random walk from the bounds f(n)cg(n), with applications. Ann. Probab. 7 672-692.
    • (1979) Ann. Probab. , vol.7 , pp. 672-692
    • Lai, T.L.1    Wijsman, R.A.2
  • 22
    • 0003725238 scopus 로고
    • Boundary crossing of Brownian motion: Its relation to the law of the iterated logarithm and to sequential analysis
    • Springer, New York
    • LERCHE, H. R. (1986). Boundary Crossing of Brownian Motion: Its Relation to the Law of the Iterated Logarithm and to Sequential Analysis. Lecture Notes in Statistics 40. Springer, New York.
    • (1986) Lecture Notes in Statistics , vol.40
    • Lerche, H.R.1
  • 23
    • 0033273817 scopus 로고    scopus 로고
    • Small deviations for Gaussian Markov processes under the sup-norm
    • LI, W. V. (1999). Small deviations for Gaussian Markov processes under the sup-norm. J. Theoret. Probab. 12 971-984.
    • (1999) J. Theoret. Probab. , vol.12 , pp. 971-984
    • Li, W.V.1
  • 25
    • 0033164054 scopus 로고    scopus 로고
    • Approximation, metric entropy and small ball estimates for Gaussian measures
    • LI, W. V. and LINDE, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab. 27 1556-1578.
    • (1999) Ann. Probab. , vol.27 , pp. 1556-1578
    • Li, W.V.1    Linde, W.2
  • 26
    • 70350344396 scopus 로고    scopus 로고
    • Gaussian processes: Inequalities, small ball probabilities and applications
    • Stochastic Processes: Theory and Methods. C. R. Rao and D. Shanbhag, eds. North-Holland, Amsterdam
    • LI, W. V. and SHAO, Q. M. (2001). Gaussian processes: Inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods. Handbook of Statistics (C. R. Rao and D. Shanbhag, eds.) 19 533-598. North-Holland, Amsterdam.
    • (2001) Handbook of Statistics , vol.19 , pp. 533-598
    • Li, W.V.1    Shao, Q.M.2
  • 27
    • 0038771550 scopus 로고    scopus 로고
    • Lower tail probabilities for Gaussian processes
    • To appear
    • LI, W. V. and SHAO, Q. M. (2002a). Lower tail probabilities for Gaussian processes. Ann. Probab. To appear.
    • (2002) Ann. Probab.
    • Li, W.V.1    Shao, Q.M.2
  • 28
    • 0036012940 scopus 로고    scopus 로고
    • A normal comparison inequality and its applications
    • LI, W. V. and SHAO, Q. M. (2002b). A normal comparison inequality and its applications. Probab. Theory Related Fields 122 494-508.
    • (2002) Probab. Theory Related Fields , vol.122 , pp. 494-508
    • Li, W.V.1    Shao, Q.M.2
  • 31
    • 0001482627 scopus 로고
    • Small deviations in a space of trajectories
    • MOGULSKII, A. A. (1974). Small deviations in a space of trajectories. Theory Probab. Appl. 19 726-736.
    • (1974) Theory Probab. Appl. , vol.19 , pp. 726-736
    • Mogulskii, A.A.1
  • 32
    • 0002269607 scopus 로고
    • On estimates and asymptotic behavior of non-exit probabilities of a Wiener process to a moving boundary
    • NOVIKOV, A. A. (1979). On estimates and asymptotic behavior of non-exit probabilities of a Wiener process to a moving boundary. Mat. Sb. 38 495-505.
    • (1979) Mat. Sb. , vol.38 , pp. 495-505
    • Novikov, A.A.1
  • 33
    • 0038094820 scopus 로고
    • Small deviations of Gaussian processes
    • NOVIKOV, A. A. (1981). Small deviations of Gaussian processes. Math. Notes 29 150-155.
    • (1981) Math. Notes , vol.29 , pp. 150-155
    • Novikov, A.A.1
  • 34
    • 0033426760 scopus 로고    scopus 로고
    • Approximations of boundary crossing probabilities for a Brownian motion
    • NOVIKOV, A., FRISHLING, V. and KORDZAKHIA, N. (1999). Approximations of boundary crossing probabilities for a Brownian motion. J. Appl. Probab. 36 1019-1030.
    • (1999) J. Appl. Probab. , vol.36 , pp. 1019-1030
    • Novikov, A.1    Frishling, V.2    Kordzakhia, N.3
  • 35
    • 0038094814 scopus 로고
    • Probability bounds for first exits through moving boundaries
    • PORTNOY, S. (1978). Probability bounds for first exits through moving boundaries. Ann. Probab. 6 106-117.
    • (1978) Ann. Probab. , vol.6 , pp. 106-117
    • Portnoy, S.1
  • 37
    • 21444453887 scopus 로고    scopus 로고
    • Small ball probabilities for a Wiener process under weighted sup-norms, with an application to the supremum of Bessel local times
    • SHI, Z. (1996). Small ball probabilities for a Wiener process under weighted sup-norms, with an application to the supremum of Bessel local times. J. Theoret. Probab. 9 915-929.
    • (1996) J. Theoret. Probab. , vol.9 , pp. 915-929
    • Shi, Z.1
  • 38
    • 84944485006 scopus 로고
    • The one sided barrier problem for Gaussian noise
    • SLEPIAN, D. (1962). The one sided barrier problem for Gaussian noise. Bell System Tech. J. 41 463-501.
    • (1962) Bell System Tech. J. , vol.41 , pp. 463-501
    • Slepian, D.1
  • 39
    • 84927465241 scopus 로고
    • Some theorems concerning two-dimensional Brownian motion
    • SPITZER, F. (1958). Some theorems concerning two-dimensional Brownian motion. Trans. Amer. Math. Soc. 87 197.
    • (1958) Trans. Amer. Math. Soc. , vol.87 , pp. 197
    • Spitzer, F.1
  • 40
    • 0038094818 scopus 로고
    • Brownian first exit from and sojourn over one-sided moving boundary and application
    • UCHIYAMA, K. (1980). Brownian first exit from and sojourn over one-sided moving boundary and application. Z. Wahrsch. Verw. Gebiete 54 75-116.
    • (1980) Z. Wahrsch. Verw. Gebiete , vol.54 , pp. 75-116
    • Uchiyama, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.