메뉴 건너뛰기




Volumn 19, Issue 3, 2003, Pages 373-397

Self-affine sets and graph-directed systems

Author keywords

Attractor; Boundary; Contraction; Graph directed construction; Hausdorff dimension; Iterated function system; Overlapping; Self affine sets; Self similar sets; Tiles

Indexed keywords


EID: 0038309283     PISSN: 01764276     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00365-002-0515-0     Document Type: Article
Times cited : (49)

References (34)
  • 4
    • 0000160525 scopus 로고
    • Two-scale difference equations II: Infinite matrix products, local regularity and fractals
    • I. DAUBECHIES, J. C. LAGARIAS (1992): Two-scale difference equations II: Infinite matrix products, local regularity and fractals. SIAM J. Appl. Math., 23:1031-1079.
    • (1992) SIAM J. Appl. Math. , vol.23 , pp. 1031-1079
    • Daubechies, I.1    Lagarias, J.C.2
  • 5
    • 0002948206 scopus 로고
    • Recurrent sets
    • F. M. DEKKING (1982): Recurrent sets. Adv. in Math. 44:78-104.
    • (1982) Adv. in Math. , vol.44 , pp. 78-104
    • Dekking, F.M.1
  • 7
    • 0034196094 scopus 로고    scopus 로고
    • The Hausdorff dimension of the boundary of a self-similar tile
    • P. DUVALL, J. KEESLING, A. VINCE (2000): The Hausdorff dimension of the boundary of a self-similar tile. J. London Math. Soc. (2). 61:748-760.
    • (2000) J. London Math. Soc. (2) , vol.61 , pp. 748-760
    • Duvall, P.1    Keesling, J.2    Vince, A.3
  • 14
    • 0001265433 scopus 로고
    • Fractals and self-similarity
    • J. E. HUTCHINSON (1981): Fractals and self-similarity. Indiana Univ. Math. J., 30:713-747.
    • (1981) Indiana Univ. Math. J. , vol.30 , pp. 713-747
    • Hutchinson, J.E.1
  • 16
    • 0000000958 scopus 로고
    • Self-replicating tilings
    • Symbolic Dynamics and Its Applications (P. Walters, ed.). Boston: Birkhäuser
    • R. KENYON (1992): Self-replicating tilings. In: Symbolic Dynamics and Its Applications (P. Walters, ed.). Contemporary Mathematicians, Vol. 135. Boston: Birkhäuser, pp. 239-264.
    • (1992) Contemporary Mathematicians , vol.135 , pp. 239-264
    • Kenyon, R.1
  • 17
    • 0038442464 scopus 로고    scopus 로고
    • Hausdorff dimensions of sofic affine-invariant sets
    • R. KENYON, Y. PERES (1996): Hausdorff dimensions of sofic affine-invariant sets. Israel J. Math., 94:157-178.
    • (1996) Israel J. Math. , vol.94 , pp. 157-178
    • Kenyon, R.1    Peres, Y.2
  • 18
    • 0000457468 scopus 로고    scopus 로고
    • On the connectedness of self-affine tiles
    • I. KIRAT, K.-S. LAU (2000): On the connectedness of self-affine tiles. J. London Math. Soc. (2). 62:291-304.
    • (2000) J. London Math. Soc. (2) , vol.62 , pp. 291-304
    • Kirat, I.1    Lau, K.-S.2
  • 20
  • 22
    • 0000661853 scopus 로고    scopus 로고
    • β-expansions with deleted digits for Pisot numbers
    • S. P. LALLEY (1997): β-Expansions with deleted digits for Pisot numbers. Trans. Amer. Math. Soc., 349:4355-4365.
    • (1997) Trans. Amer. Math. Soc. , vol.349 , pp. 4355-4365
    • Lalley, S.P.1
  • 23
    • 0002242389 scopus 로고    scopus 로고
    • Iterated function systems with overlaps and the self-similar measures
    • K.-S. LAU, S.-M. NGAI, H. RAO (2001): Iterated function systems with overlaps and the self-similar measures. J. London Math. Soc., 63:99-115.
    • (2001) J. London Math. Soc. , vol.63 , pp. 99-115
    • Lau, K.-S.1    Ngai, S.-M.2    Rao, H.3
  • 24
    • 84966230972 scopus 로고
    • Hausdorff dimension in graph directed constructions
    • R. D. MAULDIN, S. C. WILLIAMS (1988): Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc., 309:811-829.
    • (1988) Trans. Amer. Math. Soc. , vol.309 , pp. 811-829
    • Mauldin, R.D.1    Williams, S.C.2
  • 25
    • 84972500327 scopus 로고
    • The Hausdorff dimension of general Sierpinski carpets
    • C. McMULLEN ( 1984): The Hausdorff dimension of general Sierpinski carpets. Nagoya Math. J., 96:1-9.
    • (1984) Nagoya Math. J. , vol.96 , pp. 1-9
    • McMullen, C.1
  • 26
    • 0035376961 scopus 로고    scopus 로고
    • Hausdorff dimension of overlapping self-similar sets
    • S.-M. NGAI, Y. WANG (2001): Hausdorff dimension of overlapping self-similar sets. J. London Math. Soc. (2), 63:655-672.
    • (2001) J. London Math. Soc. (2) , vol.63 , pp. 655-672
    • Ngai, S.-M.1    Wang, Y.2
  • 27
    • 0000357088 scopus 로고
    • Non-negative digit sets in positional number systems
    • A. M. ODLYZKO (1978): Non-negative digit sets in positional number systems. Proc. London Math. Soc. (3), 37:213-229.
    • (1978) Proc. London Math. Soc. (3) , vol.37 , pp. 213-229
    • Odlyzko, A.M.1
  • 28
    • 0002546724 scopus 로고    scopus 로고
    • Some studies of a class of self-similar fractals with overlap structure
    • H. RAO, Z.-Y. WEN (1998): Some studies of a class of self-similar fractals with overlap structure. Adv. in Appl. Math., 20:50-72.
    • (1998) Adv. in Appl. Math. , vol.20 , pp. 50-72
    • Rao, H.1    Wen, Z.-Y.2
  • 32
    • 0038442484 scopus 로고    scopus 로고
    • Self-affine tiles
    • K.-S. Lau, ed. Singapore: Springer-Verlag
    • Y. WANG (1999): Self-affine tiles. In: Advances in Wavelets (K.-S. Lau, ed.). Singapore: Springer-Verlag, pp. 261-282.
    • (1999) Advances in Wavelets , pp. 261-282
    • Wang, Y.1
  • 33
    • 21444443874 scopus 로고    scopus 로고
    • Weak separation properties for self-similar sets
    • M. P. W. ZERNER (1996): Weak separation properties for self-similar sets. Proc. Amer. Math. Soc., 124:3529-3539.
    • (1996) Proc. Amer. Math. Soc. , vol.124 , pp. 3529-3539
    • Zerner, M.P.W.1
  • 34
    • 0035527621 scopus 로고    scopus 로고
    • Self-similar lattice tilings and subdivision schemes
    • D. X. ZHOU (2001): Self-similar lattice tilings and subdivision schemes. SIAM J. Math. Anal., 33:1-15.
    • (2001) SIAM J. Math. Anal. , vol.33 , pp. 1-15
    • Zhou, D.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.