메뉴 건너뛰기




Volumn 17, Issue 4, 2000, Pages

An evolutionary selecting algorithm for the learning of rbf nets

Author keywords

Evolutionary algorithm; Orthogonal least squares training method; RBF nets; Selecting paths

Indexed keywords


EID: 0038259058     PISSN: 10008152     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (6)

References (5)
  • 1
    • 0025490985 scopus 로고
    • Networks for approximation and learning [J]
    • Piggio T. Gorosi F. Networks for approximation and learning [J]. Proc. IEEE, 199078,(9):1481-1497
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Piggio, T.1    Gorosi, F.2
  • 2
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems [A]
    • San Mateo, CA
    • Moody J E. The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems [A]. In Advances in Neural Information Processing Systems 4 [C], San Mateo, CA, 1992,847-854.
    • (1992) Advances in Neural Information Processing Systems 4 [C] , pp. 847-854
    • Moody, J.E.1
  • 3
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithms for radial basis function networks [J]
    • Chen S, Cowan C F N and Grant P M. Orthogonal least squares learning algorithms for radial basis function networks [J]. IEEE Trans. Neural Networks, 1991,2(2):302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 4
    • 0029733132 scopus 로고    scopus 로고
    • On the efficiency of the orthogonal least squares training method for radial basis function networks [J]
    • Sherstinsky A and Picard R W. On the efficiency of the orthogonal least squares training method for radial basis function networks [J]. IEEE Trans. Neural Networks, 1996,7(1):195-200.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.1 , pp. 195-200
    • Sherstinsky, A.1    Picard, R.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.