메뉴 건너뛰기




Volumn 89, Issue 1, 2002, Pages 211-224

Empty confidence sets for epidemics, branching processes and Brownian motion

Author keywords

Branching process; Brownian motion; Confidence set; Epidemic model; Likelihood based inference

Indexed keywords


EID: 0038209420     PISSN: 00063444     EISSN: None     Source Type: Journal    
DOI: 10.1093/biomet/89.1.211     Document Type: Article
Times cited : (6)

References (12)
  • 4
    • 0015119637 scopus 로고
    • The estimation of parameters from population data on the general stochastic epidemic
    • BAILEY, N. T. J. & THOMAS, A. S. (1971). The estimation of parameters from population data on the general stochastic epidemic. Theor. Pop. Biol. 2, 253-70.
    • (1971) Theor. Pop. Biol. , vol.2 , pp. 253-270
    • Bailey, N.T.J.1    Thomas, A.S.2
  • 5
    • 0000943691 scopus 로고
    • A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models
    • BALL, F. G. (1986). A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. Adv. Appl. Prob. 18, 289-310.
    • (1986) Adv. Appl. Prob. , vol.18 , pp. 289-310
    • Ball, F.G.1
  • 6
    • 0001998990 scopus 로고
    • Strong approximations for epidemic models
    • BALL, F. G. & DONNELLY, P. J. (1995). Strong approximations for epidemic models. Stoch. Proces. Appl. 55, 1-21.
    • (1995) Stoch. Proces. Appl. , vol.55 , pp. 1-21
    • Ball, F.G.1    Donnelly, P.J.2
  • 7
    • 0028037026 scopus 로고
    • The shape of the size distribution of an epidemic in a finite population
    • BALL, F. G. & NÅSELL, I. (1994). The shape of the size distribution of an epidemic in a finite population. Math. Biosci. 123, 167-81.
    • (1994) Math. Biosci. , vol.123 , pp. 167-181
    • Ball, F.G.1    Nåsell, I.2
  • 11
    • 0001236565 scopus 로고
    • The outcome of a stochastic epidemic - A note on Bailey's paper
    • WHITTLE, P. (1955). The outcome of a stochastic epidemic - a note on Bailey's paper. Biometrika 42, 116-22.
    • (1955) Biometrika , vol.42 , pp. 116-122
    • Whittle, P.1
  • 12
    • 24944553821 scopus 로고
    • An algebraic proof of the threshold theorem for the general stochastic epidemic
    • WILLIAMS, T. (1971). An algebraic proof of the threshold theorem for the general stochastic epidemic (abstract). Adv. Appl. Prob. 3, 223.
    • (1971) Adv. Appl. Prob. , vol.3 , pp. 223
    • Williams, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.