-
1
-
-
0021760726
-
-
G. R. Blumenthal, A. Dekel, J. R. Primack, M. J. Rees, Nature 311, 517 (1984).
-
(1984)
Nature
, vol.311
, pp. 517
-
-
Blumenthal, G.R.1
Dekel, A.2
Primack, J.R.3
Rees, M.J.4
-
2
-
-
0003003005
-
-
J. A. Peacock, A. E. Heavens, A. T. Davies, Eds. Hilger, Bristol
-
G. Efstathiou, in Physics of the Early Universe, J. A. Peacock, A. E. Heavens, A. T. Davies, Eds. (Hilger, Bristol, 1990) p. 361-463.
-
(1990)
Physics of the Early Universe
, pp. 361-463
-
-
Efstathiou, G.1
-
7
-
-
0027753998
-
-
S. D. M. White, J. F. Navarro, A. E. Evrard, C. S. Frenk, Nature 366, 429 (1993).
-
(1993)
Nature
, vol.366
, pp. 429
-
-
White, S.D.M.1
Navarro, J.F.2
Evrard, A.E.3
Frenk, C.S.4
-
12
-
-
4243939269
-
-
in press
-
C. Bennett et al., Astrophys. J. in press (e-Print available at http://xxx.lanl.gov/abs/astro-ph/0302208).
-
Astrophys. J.
-
-
Bennett, C.1
-
13
-
-
0038320518
-
-
D. N. Spergel et al., e-Print available at http:// xxx.lanl.gov/abs/astro-ph/0302209.
-
-
-
Spergel, D.N.1
-
16
-
-
0038659233
-
-
note
-
-1, when matter dominates the energy density of the universe. The growth is being suppressed at present by the dark energy, and it was also suppressed in the early universe when radiation dominated over matter, at z ≳ 3500.
-
-
-
-
17
-
-
0035402991
-
-
An excellent, more extensive review of the dark age can be found in R. Barkana, A. Loeb [Phys. Rep. 349, 125 (2001)].
-
(2001)
Phys. Rep.
, vol.349
, pp. 125
-
-
Barkana, R.1
Loeb, A.2
-
18
-
-
0043032204
-
-
X. Fan et al., Astron. J. 122, 2833 (2001).
-
(2001)
Astron. J.
, vol.122
, pp. 2833
-
-
Fan, X.1
-
19
-
-
0037644277
-
-
X. Fan et al., Astron. J., 25, 1649 (2003).
-
(2003)
Astron. J.
, vol.25
, pp. 1649
-
-
Fan, X.1
-
25
-
-
0037645026
-
-
P. C. Stancil, A. Loeb, M. Zaldarriaga, A. Dalgarno, S. Lepp, Astrophys. J. 580, 29 (2002).
-
(2002)
Astrophys. J.
, vol.580
, pp. 29
-
-
Stancil, P.C.1
Loeb, A.2
Zaldarriaga, M.3
Dalgarno, A.4
Lepp, S.5
-
26
-
-
0038320514
-
-
note
-
The jeans mass of gas at a certain temperature and density is the minimum mass required for gravity to overcome the pressure gradient and force the gas to collapse.
-
-
-
-
28
-
-
0038659238
-
-
note
-
Atomic helium needs even more energy to make a transition to the first excited state than atomic hydrogen, and therefore it can induce cooling only at higher temperatures than hydrogen.
-
-
-
-
32
-
-
22444451602
-
-
T. Abel, P. Anninos, M. L. Norman, Y. Zhang, Astrophys. J. 508, 518 (1998).
-
(1998)
Astrophys. J.
, vol.508
, pp. 518
-
-
Abel, T.1
Anninos, P.2
Norman, M.L.3
Zhang, Y.4
-
44
-
-
0038659226
-
-
note
-
Carbon and heavier elements were not synthesized in the Big Bang, and were all produced in stellar interiors. These elements therefore were not present in the primordial gas, and their abundance increased as supernovae and stellar winds delivered the products of the stellar nuclear furnaces to interstellar space.
-
-
-
-
46
-
-
0037645013
-
-
note
-
4 K in the interstellar medium of galaxies at the present time.
-
-
-
-
47
-
-
0001247184
-
-
V. Bromm, A. Ferrara, P. S. Coppi, R. B. Larson, Mon. Not. R. Astron. Soc. 328, 969 (2001).
-
(2001)
Mon. Not. R. Astron. Soc.
, vol.328
, pp. 969
-
-
Bromm, V.1
Ferrara, A.2
Coppi, P.S.3
Larson, R.B.4
-
49
-
-
0001486659
-
-
R. Schneider, A. Ferrara, P. Natarajan, K. Omukai, Astrophys. J. 571, 30 (2002).
-
(2002)
Astrophys. J.
, vol.571
, pp. 30
-
-
Schneider, R.1
Ferrara, A.2
Natarajan, P.3
Omukai, K.4
-
50
-
-
0038659227
-
-
note
-
Stars of 0.8 solar masses have a lifetime about equal to the present age of the universe, so that one formed in the early universe should be running out of hydrogen in its core at present and becoming a luminous red giant. More massive stars live shorter and less massive ones live longer.
-
-
-
-
52
-
-
0037206837
-
-
N. Christlieb et al., Nature 419, 904 (2002).
-
(2002)
Nature
, vol.419
, pp. 904
-
-
Christlieb, N.1
-
53
-
-
0038320511
-
-
note
-
The past light-cone is the set of all events in the universe from which a light message would be reaching us just at the present time. The further away we look, the further back into the past we are observing.
-
-
-
-
54
-
-
0037645027
-
-
note
-
This simple calculation of the z at which the first object visible to an observer would collapse from a very rare fluctuation is based on the approximation that the collapse takes place when the linearly extrapolated overdensity reaches a fixed value, and is known as the Press-Schechter model, which was first proposed in (102) and is described in detail in its modern use in (103-105). The redshifts given here for the first object that would become visible may be changed slightly by corrections to this approximate model, and by changes in the CDM power spectrum normalization and primordial spectral index.
-
-
-
-
60
-
-
4243630509
-
-
in press
-
R. L. White, R. H. Becker, X. Fan, M. A. Strauss, Astron, J., in press (e-Print available at http://xxx. lanl.gov/abs/astro-ph/0303476).
-
Astron. J.
-
-
White, R.L.1
Becker, R.H.2
Fan, X.3
Strauss, M.A.4
-
62
-
-
0001649748
-
-
X. Fan et al., Astron. J. 123, 1247 (2002).
-
(2002)
Astron. J.
, vol.123
, pp. 1247
-
-
Fan, X.1
-
65
-
-
0033119108
-
-
C. W. Akerlof et al., Nature 398, 400 (1999).
-
(1999)
Nature
, vol.398
, pp. 400
-
-
Akerlof, C.W.1
-
73
-
-
0038659218
-
-
A. Kogut et al., e-Print available at http://xxx.lanl. gov/abs/astro-ph/0302213.
-
-
-
Kogut, A.1
-
74
-
-
0038659220
-
-
note
-
The errors are 1σ and include the best estimate of the WMAP team of systematic uncertainties associated with foreground Galactic emission; see table 2 of (73).
-
-
-
-
75
-
-
0037645020
-
-
J. Miralda-Escudé, e-Print available at http://xxx.lanl. gov/abs/astro-ph/0211071.
-
-
-
Miralda-Escudé, J.1
-
77
-
-
0038659212
-
-
Z. Haiman, G. Holder, e-Print available at http:// xxx.lanl.gov/abs/astro-ph/0302403.
-
-
-
Haiman, Z.1
Holder, G.2
-
83
-
-
0037982917
-
-
R. Cen, e-Print available at http://xxx.lanl.gov/abs/ astro-ph/0303236.
-
-
-
Cen, R.1
-
85
-
-
0038320496
-
-
note
-
s. Massive stars with no heavy elements can fuse almost all their hydrogen content over their lifetime and are hot enough to emit most of their radiation as ionizing photons (86-88).
-
-
-
-
95
-
-
0034627506
-
-
P. Tozzi, P. Madau, A. Meiksin, M. J. Rees, Astrophys. J. 528, 597 (2000).
-
(2000)
Astrophys. J.
, vol.528
, pp. 597
-
-
Tozzi, P.1
Madau, P.2
Meiksin, A.3
Rees, M.J.4
-
96
-
-
0038759235
-
-
I. T. Iliev, P. R. Shapiro, A. Ferrara, H. Martel, Astrophys. J. 572, 123 (2002).
-
(2002)
Astrophys. J.
, vol.572
, pp. 123
-
-
Iliev, I.T.1
Shapiro, P.R.2
Ferrara, A.3
Martel, H.4
-
99
-
-
0038320489
-
-
B. Ciardi, P. Madau, e-Print available at http://xxx. lanl.gov/abs/astro-ph/0303249.
-
-
-
Ciardi, B.1
Madau, P.2
-
100
-
-
0038659204
-
-
U.-L. Pen, e-Print available at http://xxx.lanl.gov/ abs/astro-ph/0305387.
-
-
-
Pen, U.-L.1
-
101
-
-
0038659205
-
-
note
-
At present the Giant Metrewave Radio Telescope (www.gmrt.ncra.tifr.res.in) in India is already searching for high-z 21-cm signals, and more sensitive observatories being designed now are the Square Kilometer Array (www.skatelescope.org) and the Low Frequency Array (www.lofar.org).
-
-
-
-
103
-
-
0000594256
-
-
J. R. Bond, S. Cole, G. Efstathiou, N. Kaiser, Astrophys. J. 379, 440 (1991).
-
(1991)
Astrophys. J.
, vol.379
, pp. 440
-
-
Bond, J.R.1
Cole, S.2
Efstathiou, G.3
Kaiser, N.4
-
106
-
-
0037982913
-
-
note
-
I thank X. Fan and N. Gnedin for their permission to reproduce and their help in providing figures from their papers and P. Sieber for suggesting a good way to start this article. I also thank T. Abel, A. Loeb, M. Rees, and my referees for their comments.
-
-
-
|