메뉴 건너뛰기




Volumn 144, Issue 1, 2003, Pages 107-116

An estimate of the Babuška-Brezzi inf-sup discrete stability constant for general linear Petrov-Galerkin finite element formulations (an estimate of the Babuška-Brezzi stability constant)

Author keywords

Babu ka Brezzi stability constant; Discrete inf sup condition; Finite elements; Petrov Galerkin approximations

Indexed keywords

APPROXIMATION THEORY; FINITE ELEMENT METHOD; FUNCTIONS; LINEAR EQUATIONS;

EID: 0038044644     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0096-3003(02)00395-8     Document Type: Article
Times cited : (3)

References (16)
  • 3
    • 0000443756 scopus 로고
    • Error-bounds for finite element method
    • Babuška I. Error-bounds for finite element method. Numer. Math. 16:1971;322-333.
    • (1971) Numer. Math. , vol.16 , pp. 322-333
    • Babuška, I.1
  • 4
    • 0025495043 scopus 로고
    • A discourse on the stability conditions for mixed finite element formulations
    • J.T. Oden. Amsterdam: North Holland
    • Brezzi F., Bathe K.-J. A discourse on the stability conditions for mixed finite element formulations. Oden J.T. Reliability in Computational Mechanics. 1990;27-57 North Holland, Amsterdam.
    • (1990) Reliability in Computational Mechanics , pp. 27-57
    • Brezzi, F.1    Bathe, K.-J.2
  • 5
    • 0017633213 scopus 로고
    • An analysis of the convergence of mixed finite element methods
    • Fortin M. An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11:1977;341-354.
    • (1977) RAIRO Anal. Numér. , vol.11 , pp. 341-354
    • Fortin, M.1
  • 6
    • 0019362553 scopus 로고
    • Old and new finite elements for incompressible flows
    • Fortin M. Old and new finite elements for incompressible flows. Int. J. Numer. Meth. Fluids. 1:1981;347-364.
    • (1981) Int. J. Numer. Meth. Fluids , vol.1 , pp. 347-364
    • Fortin, M.1
  • 7
    • 0003854283 scopus 로고    scopus 로고
    • United Kingdom: Cambridge University Press
    • Braess D. Finite Elements. 1997;Cambridge University Press, United Kingdom.
    • (1997) Finite Elements
    • Braess, D.1
  • 8
    • 0016093926 scopus 로고
    • On the existence uniqueness and approximation of saddle-point problems arising from Lagrange multipliers
    • Brezzi F. On the existence uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. 8(R-2):1974;129-151.
    • (1974) RAIRO Anal. Numér. , vol.8 , Issue.R-2 , pp. 129-151
    • Brezzi, F.1
  • 9
    • 0030784297 scopus 로고
    • The Babuška-Brezzi condition and the patch test: An example
    • Babuška I., Narasimhan R. The Babuška-Brezzi condition and the patch test: an example. Comput. Meth. Appl. Mech. Eng. 140:1977;183-199.
    • (1977) Comput. Meth. Appl. Mech. Eng. , vol.140 , pp. 183-199
    • Babuška, I.1    Narasimhan, R.2
  • 10
    • 0033132595 scopus 로고    scopus 로고
    • A discontinuous h-p finite element method for diffusion problems: 1-D analysis
    • Babuška I., Baumann C.E., Oden J.T. A discontinuous h-p finite element method for diffusion problems: 1-D analysis. Comput. Math. Appl. 37:1999;103-122.
    • (1999) Comput. Math. Appl. , vol.37 , pp. 103-122
    • Babuška, I.1    Baumann, C.E.2    Oden, J.T.3
  • 12
    • 0031249498 scopus 로고    scopus 로고
    • The finite element patch test revisited. A computer test for convergence validation and error estimates
    • Zienkiewicz O.C., Taylor R.L. The finite element patch test revisited. A computer test for convergence validation and error estimates. Comput. Meth. Appl. Mech. Eng. 149:1997;223-254.
    • (1997) Comput. Meth. Appl. Mech. Eng. , vol.149 , pp. 223-254
    • Zienkiewicz, O.C.1    Taylor, R.L.2
  • 15
    • 84966217446 scopus 로고
    • An observation concerning Ritz-Galerkin methods with indefinite bilinear forms
    • Schatz A.H. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28:1974;959-962.
    • (1974) Math. Comput. , vol.28 , pp. 959-962
    • Schatz, A.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.