메뉴 건너뛰기




Volumn 13, Issue 1, 2003, Pages 255-274

Posterior mode estimation for nonlinear and non-Gaussian state space models

Author keywords

Filtering; Kaiman filter; Quadratic hill climbing; Stochastic volatility model; Time series

Indexed keywords


EID: 0038036572     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (17)

References (20)
  • 1
    • 0015385037 scopus 로고
    • Nonlinear Bayesian estimation using Gaussian sum approximations
    • Alspach, D. L. and Sorenson, H. W. (1972). Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Automat. Control 17, 439-48.
    • (1972) IEEE Trans. Automat. Control , vol.17 , pp. 439-448
    • Alspach, D.L.1    Sorenson, H.W.2
  • 3
    • 0018106066 scopus 로고
    • On the optimal and suboptimal nonlinear filtering problem for discrete-time systems
    • Andrade Netto, M. L., Gimeno, L. and Mendes, M. J. (1978). On the optimal and suboptimal nonlinear filtering problem for discrete-time systems. IEEE Trans. Automat. Control 23, 1062-67.
    • (1978) IEEE Trans. Automat. Control , vol.23 , pp. 1062-1067
    • Andrade Netto, M.L.1    Gimeno, L.2    Mendes, M.J.3
  • 4
    • 84950445183 scopus 로고
    • A Monte Carlo approach to nonnormal and nonlinear state-space modeling
    • Carlin, B. P., Polson, N. G. and Stoffer, D. (1992). A Monte Carlo approach to nonnormal and nonlinear state-space modeling. J. Amer. Statist. Assoc. 87, 493-500.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 493-500
    • Carlin, B.P.1    Polson, N.G.2    Stoffer, D.3
  • 5
    • 0000094018 scopus 로고    scopus 로고
    • Monte Carlo maximum likelihood estimation for non-Gaussian state space models
    • Durbin, J. and Koopman, S. J. (1997). Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika 84, 669-84.
    • (1997) Biometrika , vol.84 , pp. 669-684
    • Durbin, J.1    Koopman, S.J.2
  • 6
    • 0034354798 scopus 로고    scopus 로고
    • Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives
    • Durbin, J. and Koopman, S. J. (2000). Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives. J. Roy. Statist. Soc. Ser. B 62, 3-29.
    • (2000) J. Roy. Statist. Soc. Ser. B , vol.62 , pp. 3-29
    • Durbin, J.1    Koopman, S.J.2
  • 7
    • 0001264648 scopus 로고
    • Estimating time-varying risk premia in the term structure: The ARCH-M model
    • Engle, R. F., Lilien, D. M. and Robins, R. P. (1987). Estimating time-varying risk premia in the term structure: the ARCH-M model. Econometrica 55, 391-407.
    • (1987) Econometrica , vol.55 , pp. 391-407
    • Engle, R.F.1    Lilien, D.M.2    Robins, R.P.3
  • 8
    • 0000350343 scopus 로고
    • Posterior mode estimation by extended Kaiman filtering for multivariate dynamic generalized linear models
    • Fahrmeir, L. (1992). Posterior mode estimation by extended Kaiman filtering for multivariate dynamic generalized linear models. J. Amer. Statist. Assoc. 87, 501-9.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 501-509
    • Fahrmeir, L.1
  • 10
  • 12
    • 84962984403 scopus 로고
    • Multivariate stochastic variance models
    • Harvey, A. C., Ruiz, E. and Shephard, N. (1994). Multivariate stochastic variance models. Rev. Econom. Stud. 61, 247-264.
    • (1994) Rev. Econom. Stud. , vol.61 , pp. 247-264
    • Harvey, A.C.1    Ruiz, E.2    Shephard, N.3
  • 13
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference and comparison with ARCH models
    • Kim, S., Shephard, N. and Chib, S. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. Rev. Econom. Stud. 65, 361-93.
    • (1998) Rev. Econom. Stud. , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 14
    • 84950459387 scopus 로고
    • Non-Gaussian state-space modeling of nonstationary time series
    • Kitagawa, G. (1987). Non-Gaussian state-space modeling of nonstationary time series. J. Amer. Statist. Assoc. 82, 1032-63.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 1032-1063
    • Kitagawa, G.1
  • 15
    • 0142023212 scopus 로고    scopus 로고
    • The stochastic volatility in mean model: Empirical evidence from international stock markets
    • in press
    • Koopman, S. J. and Hol Uspensky, E. (2002). The stochastic volatility in mean model: empirical evidence from international stock markets. J. Appl. Econom. 17, in press.
    • (2002) J. Appl. Econom. , vol.17
    • Koopman, S.J.1    Hol Uspensky, E.2
  • 16
    • 21344443427 scopus 로고    scopus 로고
    • On a double threshold autoregressive heteroskedastic autoregressive time series model
    • Li, C. W. and Li, W. K. (1996). On a double threshold autoregressive heteroskedastic autoregressive time series model. J. Appl. Econom. 11, 253-274.
    • (1996) J. Appl. Econom. , vol.11 , pp. 253-274
    • Li, C.W.1    Li, W.K.2
  • 17
    • 0000641348 scopus 로고
    • Conditional heteroskedasticity in asset returns: A new approach
    • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59, 347-70.
    • (1991) Econometrica , vol.59 , pp. 347-370
    • Nelson, D.B.1
  • 19
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement time series
    • Shephard, N. and Pitt, M. K. (1997). Likelihood analysis of non-Gaussian measurement time series. Biometrika 84, 653-67.
    • (1997) Biometrika , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.K.2
  • 20
    • 84986393031 scopus 로고
    • Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration
    • Tanizaki H. and Mariano, R. S. (1994). Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration. J. Appl. Econom. 9, 163-79.
    • (1994) J. Appl. Econom. , vol.9 , pp. 163-179
    • Tanizaki, H.1    Mariano, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.