메뉴 건너뛰기




Volumn 45, Issue 10-11, 2003, Pages 1469-1477

A nonmonotone adaptive trust region method and its convergence

Author keywords

Global convergence; Nonmonotone linesearch technique; Superlinear convergence; Trust region method; Unconstrained optimization

Indexed keywords

ALGORITHMS; CONSTRAINT THEORY; MATHEMATICAL MODELS; MATRIX ALGEBRA;

EID: 0038006672     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0898-1221(03)00130-5     Document Type: Article
Times cited : (34)

References (18)
  • 1
    • 0038821465 scopus 로고    scopus 로고
    • An adaptive trust region method and its convergence
    • X.S. Zhang, J.L. Zhang and L.Z. Liao, An adaptive trust region method and its convergence, Science in China 45, 620-631, (2002).
    • (2002) Science in China , vol.45 , pp. 620-631
    • Zhang, X.S.1    Zhang, J.L.2    Liao, L.Z.3
  • 2
  • 5
    • 0003162836 scopus 로고
    • Recent developments in algorithms and software for trust region methods
    • Edited by A. Bachem, M. Grötchel and B. Körte, Springer-Verlag, Berlin
    • J.J. Moré, Recent developments in algorithms and software for trust region methods, In Mathematical Programming: The State of the Art, (Edited by A. Bachem, M. Grötchel and B. Körte), pp. 258-287, Springer-Verlag, Berlin, (1983).
    • (1983) Mathematical Programming: The State of the Art , pp. 258-287
    • Moré, J.J.1
  • 6
    • 0002302301 scopus 로고
    • Convergence properties of a class minimization algorithms
    • Edited by O.L. Mangasarian, R.R, Meyer and S.M. Robinson, Academic Press, New York
    • M.J.D. Powell, Convergence properties of a class minimization algorithms, In Nonlinear Programming 2, (Edited by O.L. Mangasarian, R.R, Meyer and S.M. Robinson), pp. 1-27, Academic Press, New York, (1975).
    • (1975) Nonlinear Programming 2 , vol.2 , pp. 1-27
    • Powell, M.J.D.1
  • 7
    • 0021482384 scopus 로고
    • On the global convergence of trust region algorithms for unconstrained optimization
    • M.J.D. Powell, On the global convergence of trust region algorithms for unconstrained optimization, Math. Prog. 29, 297-303, (1984).
    • (1984) Math. Prog. , vol.29 , pp. 297-303
    • Powell, M.J.D.1
  • 8
    • 0022015590 scopus 로고
    • A family of trust-region-based algorithms for unconstrained minimization with strong global convergence
    • G.A. Schultz, R.B. Schnabel and R.H. Byrd, A family of trust-region-based algorithms for unconstrained minimization with strong global convergence, SIAM J. Numer. Anal. 22, 47-67, (1985).
    • (1985) SIAM J. Numer. Anal. , vol.22 , pp. 47-67
    • Schultz, G.A.1    Schnabel, R.B.2    Byrd, R.H.3
  • 9
    • 0342437588 scopus 로고    scopus 로고
    • On the convergence of trust region algorithms
    • Y. Yuan, On the convergence of trust region algorithms, Mathematica Numerica Sinica 16, 333-346, (1996).
    • (1996) Mathematica Numerica Sinica , vol.16 , pp. 333-346
    • Yuan, Y.1
  • 13
    • 0001898672 scopus 로고    scopus 로고
    • Non-monotone trust region algorithm for nonlinear optimization subject to convex constraints
    • Ph.L. Toint, Non-monotone trust region algorithm for nonlinear optimization subject to convex constraints, Math. Prog. 77, 69-94, (1997).
    • (1997) Math. Prog. , vol.77 , pp. 69-94
    • Toint, Ph.L.1
  • 14
    • 0001019976 scopus 로고    scopus 로고
    • An assessment of non-monotone linesearch techniques for unconstrained optimization
    • Ph.L. Toint, An assessment of non-monotone linesearch techniques for unconstrained optimization, SIAM J. J. Sci Comp. 17, 725-739, (1996).
    • (1996) SIAM J. J. Sci Comp. , vol.17 , pp. 725-739
    • Toint, Ph.L.1
  • 16
    • 0038821467 scopus 로고
    • Nonmonotone trust region methods with curvilinear path in unconstrained minimization
    • Y. Xiao and F.J. Zhou, Nonmonotone trust region methods with curvilinear path in unconstrained minimization, Computing 48, 303-317, (1992).
    • (1992) Computing , vol.48 , pp. 303-317
    • Xiao, Y.1    Zhou, F.J.2
  • 17
    • 0013533303 scopus 로고    scopus 로고
    • Nonmonotone trust region methods for nonlinear equality constrained optimization without a penalty function
    • Department of Computational and Applied Mathematics, Rice University
    • S. Ulbrich and M. Ulbrich, Nonmonotone trust region methods for nonlinear equality constrained optimization without a penalty function, Tech. Report, Department of Computational and Applied Mathematics, Rice University, (2000).
    • (2000) Tech. Report
    • Ulbrich, S.1    Ulbrich, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.