-
1
-
-
0003583688
-
-
Oxford University Press, London
-
H. S. Carslaw, and J. C. Jaeger, Conduction of Heat in Solids, 2nd Ed., Oxford University Press, London, 1959.
-
(1959)
Conduction of Heat in Solids, 2nd Ed.
-
-
Carslaw, H.S.1
Jaeger, J.C.2
-
3
-
-
0042241864
-
A survey of the formulation and solution of free and moving boundary (Stefan) problems
-
Brunel University, Uxbridge, United Kingdom
-
R. M. Furzeland, A Survey of the Formulation and Solution of Free and Moving Boundary (Stefan) Problems, Tech. Rept. TR/76, Brunel University, Uxbridge, United Kingdom.
-
Tech. Rept.
, vol.TR-76
-
-
Furzeland, R.M.1
-
4
-
-
0003799623
-
-
Clarendon Press, Oxford, England
-
J. R. Ockendon, and W. R. Hodgkins, eds., Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford, England, 1975.
-
(1975)
Moving Boundary Problems in Heat Flow and Diffusion
-
-
Ockendon, J.R.1
Hodgkins, W.R.2
-
5
-
-
0003341014
-
The stefan problem
-
AMS, Providence, Rhode Island
-
L. I. Rubinstein, The Stefan Problem, Trans. Math. Monographs, 27, AMS, Providence, Rhode Island, 1971.
-
(1971)
Trans. Math. Monographs
, vol.27
-
-
Rubinstein, L.I.1
-
6
-
-
84964236688
-
"The heat-balance integral and its application to problems involving a change of phase
-
T. R. Goodman, "The Heat-Balance Integral and its Application to Problems Involving a Change of Phase, Trans. ASME, 80:335-342 (1959).
-
(1959)
Trans. ASME
, vol.80
, pp. 335-342
-
-
Goodman, T.R.1
-
7
-
-
0023984042
-
Constrained integral method for solving moving boundary problems
-
R. S. Gupta, and N. C. Banik, Constrained Integral Method for Solving Moving Boundary Problems, Comput. Methods. Appl. Mech. Engrg. 67:211-221 (1988).
-
(1988)
Comput. Methods. Appl. Mech. Engrg.
, vol.67
, pp. 211-221
-
-
Gupta, R.S.1
Banik, N.C.2
-
8
-
-
0041681619
-
Use of integral methods in transient heat transfer analysis
-
W. C. Reynolds, and T. A. Dolton, Use of Integral Methods in Transient Heat Transfer Analysis, ASME paper no. 58-A-248, 1958.
-
(1958)
ASME Paper No. 58-A-248
-
-
Reynolds, W.C.1
Dolton, T.A.2
-
9
-
-
0024105278
-
On a variable time step method for the one-dimension stefan problem
-
N. S. Asaithambi, On a Variable Time Step Method for the One-Dimension Stefan Problem, Comput. Meths. Appl. Mech. Engrg. 71:1-13 (1988).
-
(1988)
Comput. Meths. Appl. Mech. Engrg.
, vol.71
, pp. 1-13
-
-
Asaithambi, N.S.1
-
10
-
-
38249008947
-
A galerkin method for stefan problems
-
N. S. Asaithambi, A Galerkin Method for Stefan Problems, Appl. Math. Comput. 52:239-250 (1992).
-
(1992)
Appl. Math. Comput.
, vol.52
, pp. 239-250
-
-
Asaithambi, N.S.1
-
11
-
-
77957212243
-
Two methods for the numerical solution of moving boundary problems in diffusion and heat flow
-
J. Crank, Two Methods for the Numerical Solution of Moving Boundary Problems in Diffusion and Heat Flow, J. Mech. Appl. Math. 10:220-231 (1957).
-
(1957)
J. Mech. Appl. Math.
, vol.10
, pp. 220-231
-
-
Crank, J.1
-
12
-
-
77958399004
-
A moving boundary problem arising from the diffusion in absorbing tissue
-
J. Crank, and R. S. Gupta, A Moving Boundary Problem Arising From the Diffusion in Absorbing Tissue, J. Inst. Math. Appl. 10:19-33 (1972).
-
(1972)
J. Inst. Math. Appl.
, vol.10
, pp. 19-33
-
-
Crank, J.1
Gupta, R.S.2
-
13
-
-
0037627223
-
Finite element solution of the Stefan problem
-
MAFELAP 1978, (J. R. Whiteman Ed.), Academic Press, New York
-
W. D. Finn, and E. Voroglu, Finite element solution of the Stefan problem, in The Mathematics of Finite Elements and Applications, MAFELAP 1978, (J. R. Whiteman Ed.), Academic Press, New York, 1979.
-
(1979)
The Mathematics of Finite Elements and Applications
-
-
Finn, W.D.1
Voroglu, E.2
-
14
-
-
0019037955
-
A modified variable time step method for the one-dimensional stefan problem
-
R. S. Gupta, and D. Kumar, A Modified Variable Time Step Method for the One-Dimensional Stefan Problem, Comput. Meths. Appl. Mech. Engrg. 23:101-109 (1980).
-
(1980)
Comput. Meths. Appl. Mech. Engrg.
, vol.23
, pp. 101-109
-
-
Gupta, R.S.1
Kumar, D.2
-
15
-
-
0021446816
-
Variable time step method with coordinate transformation
-
R. S. Gupta, and D. Kumar, Variable time step method with coordinate transformation, Comput. Meths. Appl. Mech. Engrg. 44:91-103 (1984).
-
(1984)
Comput. Meths. Appl. Mech. Engrg.
, vol.44
, pp. 91-103
-
-
Gupta, R.S.1
Kumar, D.2
-
16
-
-
0002594764
-
Heat conduction in melting solids
-
H. G. Landau, Heat Conduction in Melting Solids, Quart. Appl. Math. 8:81-94 (1950).
-
(1950)
Quart. Appl. Math.
, vol.8
, pp. 81-94
-
-
Landau, H.G.1
-
17
-
-
84984134352
-
Numerical and machine solutions of transient heat conduction involving melting or freezing
-
W. D. Murray, and F. Landis, Numerical and Machine Solutions of Transient Heat Conduction Involving Melting or Freezing, J. Heat Transfer, 81:106-112 (1959).
-
(1959)
J. Heat Transfer
, vol.81
, pp. 106-112
-
-
Murray, W.D.1
Landis, F.2
-
18
-
-
84944727499
-
On the numerical integration of a parabolic differential equation subject to a moving boundary condition
-
J. Douglas, and T. M. Gallie, On the Numerical Integration of a Parabolic Differential Equation Subject to a Moving Boundary Condition, Duke Math. J. 2:557-570 (1955).
-
(1955)
Duke Math. J.
, vol.2
, pp. 557-570
-
-
Douglas, J.1
Gallie, T.M.2
-
19
-
-
0016034690
-
One dimensional inward solidification with a convective boundary condition
-
J. S. Goodling, and M. S. Khader, One dimensional inward solidification with a convective boundary condition, ASF Cast Metals Res. J. 10:26-29 (1974).
-
(1974)
ASF Cast Metals Res. J.
, vol.10
, pp. 26-29
-
-
Goodling, J.S.1
Khader, M.S.2
|