-
4
-
-
84873055189
-
-
(Wiley, New York)
-
W. Hehre, L. Radom, J. A. Pople, and P. v. R. Schleyer, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
-
(1986)
Ab Initio Molecular Orbital Theory
-
-
Hehre, W.1
Radom, L.2
Pople, J.A.3
Schleyer, P.V.R.4
-
6
-
-
4243617877
-
-
P. E. Maslen, C. Ochsenfeld, C. A. White, M. S. Lee, and M. Head-Gordon, J. Phys. Chem. A 102, 2215 (1998)
-
(1998)
J. Phys. Chem. A
, vol.102
, pp. 2215
-
-
Maslen, P.E.1
Ochsenfeld, C.2
White, C.A.3
Lee, M.S.4
Head-Gordon, M.5
-
10
-
-
24244438779
-
-
C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon, Chem. Phys. Lett. 230, 8 (1994).
-
(1994)
Chem. Phys. Lett.
, vol.230
, pp. 8
-
-
White, C.A.1
Johnson, B.G.2
Gill, P.M.W.3
Head-Gordon, M.4
-
11
-
-
0030567425
-
-
C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon, Chem. Phys. Lett. 253, 268 (1996).
-
(1996)
Chem. Phys. Lett.
, vol.253
, pp. 268
-
-
White, C.A.1
Johnson, B.G.2
Gill, P.M.W.3
Head-Gordon, M.4
-
23
-
-
0038682786
-
-
edited by J. M. Seminario (Elsevier Science, Amsterdam)
-
B. G. Johnson, C. A. White, Z. Zhang, B. Chen, R. L. Graham, P. M. W. Gill, and M. Head-Gordon, in Recent Developments in Density Functional Theory, edited by J. M. Seminario (Elsevier Science, Amsterdam, 1996), Vol. 4.
-
(1996)
Recent Developments in Density Functional Theory
, vol.4
-
-
Johnson, B.G.1
White, C.A.2
Zhang, Q.3
Chen, B.4
Graham, R.L.5
Gill, P.M.W.6
Head-Gordon, M.7
-
27
-
-
33744671412
-
-
P. Ordejón, D. A. Drabold, M. P. Grumbach, and R. M. Martin, Phys. Rev. B 48, 14646 (1993).
-
(1993)
Phys. Rev. B
, vol.48
, pp. 14646
-
-
Ordejón, P.1
Drabold, D.A.2
Grumbach, M.P.3
Martin, R.M.4
-
29
-
-
0004161838
-
-
(Cambridge University Press, Cambridge)
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 1992).
-
(1992)
Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd Ed.
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
38
-
-
0037668473
-
-
note
-
As pointed out by Helgaker, Larsen, Olsen, and Jørgensen in Ref. 40, one can also parameterize the Hartree-Fock/Kohm-Sham energy this way, leading to a diagonalization-free approach. Here the most desirable minimization method is BFGS, because it does not require extra Fock builds to find the next step direction. But parallel transport of previous gradient and step vectors is not quite straightforward even though its MO counterpart was already developed in Refs. 31 and 32.
-
-
-
-
40
-
-
0000797137
-
-
T. Helgaker, H. Larsen, J. Olsen, and P. Jørgensen, Chem. Phys. Lett. 327, 397 (2000).
-
(2000)
Chem. Phys. Lett.
, vol.327
, pp. 397
-
-
Helgaker, T.1
Larsen, H.2
Olsen, J.3
Jørgensen, P.4
-
41
-
-
0035585126
-
-
H. Larsen, J. Olsen, P. Jørgensen, and T. Helgaker, J. Chem. Phys. 115, 9685 (2001).
-
(2001)
J. Chem. Phys.
, vol.115
, pp. 9685
-
-
Larsen, H.1
Olsen, J.2
Jørgensen, P.3
Helgaker, T.4
-
42
-
-
0013109820
-
-
M. Head-Gordon, Y. Shao, C. Saravanan, and C. A. White, Mol. Phys. 101, 37 (2003).
-
(2003)
Mol. Phys.
, vol.101
, pp. 37
-
-
Head-Gordon, M.1
Shao, Y.2
Saravanan, C.3
White, C.A.4
-
44
-
-
0031565710
-
-
C. A. White, P. E. Maslen, M. S. Lee, and M. Head-Gordon, Chem. Phys. Lett. 276, 133 (1997).
-
(1997)
Chem. Phys. Lett.
, vol.276
, pp. 133
-
-
White, C.A.1
Maslen, P.E.2
Lee, M.S.3
Head-Gordon, M.4
-
45
-
-
0038006188
-
-
note
-
As pointed out be Challacombe in Ref. 37, the inverse overlap matrix is itself dense, but one can avoid building it explicitly by using the inverse Cholesky factor, Z, which is not dense.
-
-
-
-
46
-
-
0037668472
-
-
(in press)
-
C. Saravanan, Y. Shao, R. Baer, P. N. Ross, and M. Head-Gordon, J. Comput. Chem. (in press).
-
J. Comput. Chem.
-
-
Saravanan, C.1
Shao, Y.2
Baer, R.3
Ross, P.N.4
Head-Gordon, M.5
-
47
-
-
0038682796
-
-
Version 2.0, Department of Computer Science and Engineering, University of Minnesota; (unpublished)
-
Y. Saad, Version 2.0, Department of Computer Science and Engineering, University of Minnesota, http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html (unpublished).
-
-
-
Saad, Y.1
-
53
-
-
0038682799
-
-
note
-
We believe the explanation for why Ref. 41 required projection of redundant variables and our approach does not is not because of our use of an orthogonal basis, vs the nonorthogonal basis of Ref. 41. In an orthogonal basis, there is no distinction between covariant and contravariant vectors, and thus a covariant gradient can automatically be converted into a contravariant step which has no component in the occupied-occupied or virtual-virtual spaces. This applies either to steepest descent or to a full Newton step. It is no longer exactly true when cutoffs are applied or when a level shift is added to the Hessian. However, the latter is only done far from convergence. By contrast, in a nonorthogonal basis, when the inverse metric is not used to convert covariant vectors to contravariant, even a steepest descent step will have artificial components in the occupied-occupied and virtual-virtual spaces, because such a step is not tensorially correct.
-
-
-
|