메뉴 건너뛰기




Volumn 120, Issue 3, 1996, Pages 235-246

A non-regular Toeplitz flow with preset pure point spectrum

Author keywords

Group extension; Pure point spectrum; Strict ergodicity; Toeplitz sequence

Indexed keywords


EID: 0037946543     PISSN: 00393223     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (12)

References (12)
  • 2
    • 0040194908 scopus 로고
    • Strictly ergodic Toeplitz flows with positive entropics and trivial centralizers
    • . . Strictly ergodic Toeplitz flows with positive entropics and trivial centralizers. Studia Math. 103 (1992), 133-142.
    • (1992) Studia Math. , vol.103 , pp. 133-142
  • 4
    • 51249177313 scopus 로고
    • The choquet simplex of invariant measures for minimal flows
    • T. Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math. 74 (1991), 241-256
    • (1991) Israel J. Math. , vol.74 , pp. 241-256
    • Downarowicz, T.1
  • 5
    • 0039010995 scopus 로고
    • A criterion for Toeplitz flows to be topologically isomorphic and applications
    • T. Downarowicz, J. Kwiatkowski and Y. Lacroix, A criterion for Toeplitz flows to be topologically isomorphic and applications. Colloq. Math. 68 (1995), 219-228.
    • (1995) Colloq. Math. , vol.68 , pp. 219-228
    • Downarowicz, T.1    Kwiatkowski, J.2    Lacroix, Y.3
  • 7
    • 0000059296 scopus 로고
    • Strict ergodicity and transformations of the torus
    • H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573-601.
    • (1961) Amer. J. Math. , vol.83 , pp. 573-601
    • Furstenberg, H.1
  • 9
    • 0001235396 scopus 로고
    • Some constructions of strictly ergodic non-regular Toeplitz flows
    • A. Iwanik and Y. Lacroix, Some constructions of strictly ergodic non-regular Toeplitz flows, Studia Math. 110 (1994), 191-203.
    • (1994) Studia Math. , vol.110 , pp. 191-203
    • Iwanik, A.1    Lacroix, Y.2
  • 12
    • 0003094698 scopus 로고
    • Toeplitz minimal flows which are not uniquely ergodic
    • S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), 95-107.
    • (1984) Z. Wahrsch. Verw. Gebiete , vol.67 , pp. 95-107
    • Williams, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.