메뉴 건너뛰기




Volumn 45, Issue , 2001, Pages 258-268

Unique fixed points in domain theory

Author keywords

[No Author keywords available]

Indexed keywords

FUNCTIONS; MAPPING; SEMANTICS; SET THEORY; THEOREM PROVING; TOPOLOGY;

EID: 0037879735     PISSN: 15710661     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1571-0661(04)80966-6     Document Type: Conference Paper
Times cited : (10)

References (6)
  • 1
    • 0001847686 scopus 로고
    • Domain Theory
    • S. Abramsky, D.M. Gabbay, Maibaum T.S.E. Oxford University Press
    • Abramsky S., Jung A. Domain Theory. Abramsky S., Gabbay D.M., Maibaum T.S.E. Handbook of Logic in Computer Science. vol. III:1994;Oxford University Press
    • (1994) Handbook of Logic in Computer Science , vol.3
    • Abramsky, S.1    Jung, A.2
  • 3
    • 84963019042 scopus 로고
    • On fixed and periodic points under contractive mappings
    • Edelstein M. On fixed and periodic points under contractive mappings. Journal of the London Math Society. 37:1962;74-79
    • (1962) Journal of the London Math Society , vol.37 , pp. 74-79
    • Edelstein, M.1
  • 4
    • 0038217260 scopus 로고    scopus 로고
    • Nonclassical techniques for models of computation
    • K. Martin. Nonclassical techniques for models of computation. Topology Proceedings, vol. 24, 1999.
    • (1999) Topology Proceedings , vol.24
    • Martin, K.1
  • 5
    • 84974573776 scopus 로고    scopus 로고
    • The measurement process in domain theory
    • th International Colloquium on Automata, Languages and Programming (ICALP) Springer-Verlag
    • th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 1853, Springer-Verlag, 2000.
    • (2000) Lecture Notes in Computer Science , vol.1853
    • Martin, K.1
  • 6
    • 0038555985 scopus 로고    scopus 로고
    • Ph.D. Thesis, Tulane University, Department of Mathematics
    • K. Martin. A foundation for computation. Ph.D. Thesis, Tulane University, Department of Mathematics, 2000.
    • (2000) A Foundation for Computation
    • Martin, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.