-
4
-
-
33645077237
-
-
preprint cond-mat/0205589
-
J. Berg and M. Lässig, preprint cond-mat/0205589.
-
-
-
Berg, J.1
Lässig, M.2
-
5
-
-
33645054714
-
-
preprint cond-mat/0206150
-
M. Bauer and D. Bernard, preprint cond-mat/0206150.
-
-
-
Bauer, M.1
Bernard, D.2
-
12
-
-
0032286776
-
-
M. Molloy and B. Reed, Random Struct. Algorithms 6, 161 (1995); Combinatorics, Probab. Comput. 7, 295 (1998).
-
(1998)
Combinatorics, Probab. Comput.
, vol.7
, pp. 295
-
-
-
13
-
-
33645072610
-
-
note
-
The factor 1/2 reflects the symmetry between the two orientations of a link forming a tadpole and the factor 1/m! reflects the symmetry of link permutations in an m-tuple connection between nodes.
-
-
-
-
14
-
-
5744249209
-
-
N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953); K. Binder, Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1986); a pedagogical introduction can be found in M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rep. 95, 201 (1983).
-
(1953)
J. Chem. Phys.
, vol.21
, pp. 1087
-
-
Metropolis, N.1
-
15
-
-
5744249209
-
-
Springer, Berlin
-
N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953); K. Binder, Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1986); a pedagogical introduction can be found in M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rep. 95, 201 (1983).
-
(1986)
Monte Carlo Methods in Statistical Physics
-
-
Binder, K.1
-
16
-
-
0000390610
-
-
N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953); K. Binder, Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1986); a pedagogical introduction can be found in M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rep. 95, 201 (1983).
-
(1983)
Phys. Rep.
, vol.95
, pp. 201
-
-
Creutz, M.1
Jacobs, L.2
Rebbi, C.3
-
17
-
-
0031548119
-
-
P. Bialas, Z. Burda, and D. Johnston, Nucl. Phys. B 493, 505 (1997); 542, 413 (1999).
-
(1997)
Nucl. Phys. B
, vol.493
, pp. 505
-
-
Bialas, P.1
Burda, Z.2
Johnston, D.3
-
18
-
-
0033535279
-
-
P. Bialas, Z. Burda, and D. Johnston, Nucl. Phys. B 493, 505 (1997); 542, 413 (1999).
-
(1999)
Nucl. Phys. B
, vol.542
, pp. 413
-
-
-
19
-
-
33645056843
-
-
note
-
j eliminates the bias. One can drop this factor in the Metropolis test by selecting the link to be rewired as follows: select at random, in the register of nodes, the node j. Then, pick at random one of the links converging to j. With this method the mapping on the balls-in-boxes model is even more obvious, since one samples directly the nodes to be updated. In the model of Ref. [14] the node orders are the only degrees of freedom.
-
-
-
-
22
-
-
33645068751
-
-
note
-
n This does not affect the scaling properties of the cut-off.
-
-
-
-
23
-
-
33645070947
-
-
note
-
r = 20.4(2), 166(6), 1273(15), and 9374(71). This behavior can be inferred from the analytic argument of Sec. III. We do not count redundant links there, but we estimate the weight of degenerate graphs, which involves the same information.
-
-
-
-
24
-
-
33645081105
-
-
preprint cond-mat/0110574
-
A. Krzywicki, preprint cond-mat/0110574.
-
-
-
Krzywicki, A.1
-
26
-
-
33645050553
-
-
note
-
This construction is described in detail in Ref. [11], but not as a method of constructing nondegenerate graphs, the actual object of the study of the authors. Molloy and Reed find it useful to map the ensemble of graphs they are interested in on the less constrained ensemble of "random constructions," i.e., degenerate graphs (this approach was earlier used by other authors; see Ref. [7]). We are indebted to M. Bauer and D. Bernard for calling our attention to this point.
-
-
-
|