-
4
-
-
0001300985
-
Gewöhnliche differentialgleichungen mit quasimonoton wachsenden funktionen in topologischen vektorräumen
-
VOLKMANN P., Gewöhnliche Differentialgleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127, 157-164 (1972).
-
(1972)
Math. Z.
, vol.127
, pp. 157-164
-
-
Volkmann, P.1
-
5
-
-
0003228182
-
Ordinary differential equations in Banach spaces
-
Springer
-
DEIMLING K., Ordinary Differential Equations in Banach Spaces, Lecture Notes in Mathematics 596, Springer (1977).
-
(1977)
Lecture Notes in Mathematics
, vol.596
-
-
Deimling, K.1
-
6
-
-
0042803485
-
On existence of extremal solutions of differential equations in Banach spaces, existence and comparison theorems for differential equations in Banach spaces
-
DEIMLING K. & LAKSHMIKANTHAM V., On existence of extremal solutions of differential equations in Banach spaces, Existence and comparison theorems for differential equations in Banach spaces, Nonlinear Analysis, T.M.A. 3, 564-568, 569-575 (1979).
-
(1979)
Nonlinear Analysis, T.M.A.
, vol.3
, pp. 564-568
-
-
Deimling, K.1
Lakshmikantham, V.2
-
7
-
-
0000889257
-
A theorem on elliptic differential inequalities with an application to gradient bounds
-
WALTER W., A theorem on elliptic differential inequalities with an application to gradient bounds, Math. Z. 200, 293-299 (1989).
-
(1989)
Math. Z.
, vol.200
, pp. 293-299
-
-
Walter, W.1
-
8
-
-
0002038166
-
Maximum principles for cooperative elliptic systems
-
Ser. I
-
DeFIGUEIREDO D.G. & MITIDIERI E., Maximum principles for cooperative elliptic systems, C. R. Acad. Sci. Paris, t. 310, Ser. I, 49-52 (1990).
-
(1990)
C. R. Acad. Sci. Paris
, vol.310
, pp. 49-52
-
-
DeFigueiredo, D.G.1
Mitidieri, E.2
-
9
-
-
84985315693
-
Weakly coupled elliptic systems and positivity
-
MITIDIERI E. & SWEERS G., Weakly coupled elliptic systems and positivity, Math. Nachr. 173, 259-286 (1995).
-
(1995)
Math. Nachr.
, vol.173
, pp. 259-286
-
-
Mitidieri, E.1
Sweers, G.2
-
10
-
-
27144522808
-
The minimum principle for elliptic systems
-
WALTER W., The minimum principle for elliptic systems, Applicable Analysis 47, 1-6 (1992).
-
(1992)
Applicable Analysis
, vol.47
, pp. 1-6
-
-
Walter, W.1
-
11
-
-
0001550242
-
On the number of solutions of a nonlinear Dirichlet problem
-
LAZER A.C. & McKENNA P.J., On the number of solutions of a nonlinear Dirichlet problem, J. Math. Annal. Appl. 84, 282-294 (1981).
-
(1981)
J. Math. Annal. Appl.
, vol.84
, pp. 282-294
-
-
Lazer, A.C.1
McKenna, P.J.2
-
12
-
-
84953463288
-
On the Dirichlet problem for elliptic systems
-
McKENNA P.J. & WALTER W., On the Dirichlet problem for elliptic systems, Applicable Analysis 21, 207-224 (1986).
-
(1986)
Applicable Analysis
, vol.21
, pp. 207-224
-
-
McKenna, P.J.1
Walter, W.2
-
13
-
-
0042302378
-
A new approach to minimum and comparison principles for nonlinear ordinary differential operators of second order
-
WALTER W., A new approach to minimum and comparison principles for nonlinear ordinary differential operators of second order, Nonlinear Analysis, T.M.A. 25, 1071-1078 (1995).
-
(1995)
Nonlinear Analysis, T.M.A.
, vol.25
, pp. 1071-1078
-
-
Walter, W.1
-
14
-
-
34250271532
-
Symmetry and related problems via the maximum principle
-
GIDAS B., WEI-MING NI & NIRENBERG L., Symmetry and related problems via the maximum principle, Comm. Math. Phys. 68, 209-243 (1979).
-
(1979)
Comm. Math. Phys.
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.-M.2
Nirenberg, L.3
-
15
-
-
84980083679
-
On solutions of Δu = f(u)
-
KELLER J.B., On solutions of Δu = f(u), Comm. Pure Applied Math. 10, 503-510 (1957).
-
(1957)
Comm. Pure Applied Math.
, vol.10
, pp. 503-510
-
-
Keller, J.B.1
-
16
-
-
51249162198
-
Large solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behavior
-
BANDLE C. & MARCUS M., Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. d'Analyse Math. 58, 9-24 (1992).
-
(1992)
J. d'Analyse Math.
, vol.58
, pp. 9-24
-
-
Bandle, C.1
Marcus, M.2
-
17
-
-
85012300552
-
Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary
-
BANDLE C. & MARCUS M., Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary, Ann. Inst. Henri Poincaré 12, 155-171 (1995).
-
(1995)
Ann. Inst. Henri Poincaré
, vol.12
, pp. 155-171
-
-
Bandle, C.1
Marcus, M.2
-
18
-
-
0000035755
-
On a problem of Bieberbach and Rademacher
-
LAZER A. & McKENNA P.J., On a problem of Bieberbach and Rademacher, Nonlinear Analysis, T.M.A. 21, 327-335 (1993).
-
(1993)
Nonlinear Analysis, T.M.A.
, vol.21
, pp. 327-335
-
-
Lazer, A.1
McKenna, P.J.2
-
19
-
-
84972535485
-
Asymptotic behavior of solutions of boundary blow-up problems
-
LAZER A. & McKENNA P.J., Asymptotic behavior of solutions of boundary blow-up problems, Differential and Integral Equations 7 , 1001-1019 (1994).
-
(1994)
Differential and Integral Equations
, vol.7
, pp. 1001-1019
-
-
Lazer, A.1
McKenna, P.J.2
-
21
-
-
0001358147
-
A symmetry theorem in potential theory
-
SERRIN J., A symmetry theorem in potential theory, Arch. Rational Mech. Anal. 43, 304-318 (1971).
-
(1971)
Arch. Rational Mech. Anal.
, vol.43
, pp. 304-318
-
-
Serrin, J.1
-
22
-
-
0000683727
-
A characteristic property of the spheres
-
ALEXANDROFF A.D., A characteristic property of the spheres, Ann. Mat. Pura Appl. 58, 303-315 (1962).
-
(1962)
Ann. Mat. Pura Appl.
, vol.58
, pp. 303-315
-
-
Alexandroff, A.D.1
-
23
-
-
85033115164
-
Sturm-Liouville theory for the radial Δp-operator
-
accepted
-
WALTER W., Sturm-Liouville theory for the radial Δp-operator, Math. Z., accepted.
-
Math. Z.
-
-
Walter, W.1
-
24
-
-
0000633180
-
Global bifurcation from the eigenvalues of the p-Laplacian
-
DelPINO M. & MANÁSEVICH R., Global bifurcation from the eigenvalues of the p-Laplacian, J. Differential Eqns. 92, 226-251 (1991).
-
(1991)
J. Differential Eqns.
, vol.92
, pp. 226-251
-
-
DelPino, M.1
Manásevich, R.2
-
25
-
-
84971142111
-
Sturmian comparison theorem for half-linear second-order differential equations
-
LI H.J. & YEH C.C., Sturmian comparison theorem for half-linear second-order differential equations, Proc. Royal Soc. Edinburgh, Sect. A 125, 1193-1204 (1995).
-
(1995)
Proc. Royal Soc. Edinburgh, Sect. A
, vol.125
, pp. 1193-1204
-
-
Li, H.J.1
Yeh, C.C.2
-
26
-
-
0003121184
-
Radial solutions of equations and inequalities involving the p-Laplacian
-
accepted
-
REICHEL W. & WALTER W., Radial solutions of equations and inequalities involving the p-Laplacian, J. Inequalities Appl. 1, accepted.
-
J. Inequalities Appl.
, vol.1
-
-
Reichel, W.1
Walter, W.2
-
27
-
-
85033125446
-
Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up
-
accepted
-
McKENNA P.J., REICHEL W. & WALTER W., Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up, Nonlinear Analysis, T.M.A., accepted.
-
Nonlinear Analysis, T.M.A.
-
-
McKenna, P.J.1
Reichel, W.2
Walter, W.3
-
29
-
-
0003048449
-
Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e.
-
DelPINO M., MANÁSEVICH R. & MURÚA A., Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e., Nonlinear Analysis, T.M.A. 18, 79-92 (1992).
-
(1992)
Nonlinear Analysis, T.M.A.
, vol.18
, pp. 79-92
-
-
DelPino, M.1
Manásevich, R.2
Murúa, A.3
-
30
-
-
84947517119
-
On the Dirichlet problem for quasilinear equations in domains with conical boundary points
-
TOLKSDORF P., On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Eqns. 8, 773-817 (1983).
-
(1983)
Comm. Partial Differential Eqns.
, vol.8
, pp. 773-817
-
-
Tolksdorf, P.1
|