-
1
-
-
0004272337
-
-
Elsevier, New York
-
For a general introduction see, e.g., J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, New York, 1996); for a very recent overview emphasizing connections between diffusional and viscoelastic properties see G. Nägele, J. Phys. Condens. Matter 15, S407 (2003).
-
(1996)
An Introduction to Dynamics of Colloids
-
-
Dhont, J.K.G.1
-
2
-
-
0037439908
-
-
For a general introduction see, e.g., J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, New York, 1996); for a very recent overview emphasizing connections between diffusional and viscoelastic properties see G. Nägele, J. Phys. Condens. Matter 15, S407 (2003).
-
(2003)
J. Phys. Condens. Matter
, vol.15
-
-
Nägele, G.1
-
3
-
-
0033963565
-
-
See, e.g., W. K. Kegel and A. van Blaaderen, Science 287, 290 (2000); E. R. Weeks and D. A. Weitz, Phys. Rev. Lett. 89, 095704 (2002).
-
(2000)
Science
, vol.287
, pp. 290
-
-
Kegel, W.K.1
Van Blaaderen, A.2
-
4
-
-
0037179384
-
-
See, e.g., W. K. Kegel and A. van Blaaderen, Science 287, 290 (2000); E. R. Weeks and D. A. Weitz, Phys. Rev. Lett. 89, 095704 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 095704
-
-
Weeks, E.R.1
Weitz, D.A.2
-
7
-
-
0038162796
-
-
cond-mat/0211066
-
M. E. Cates, cond-mat/0211066.
-
-
-
Cates, M.E.1
-
8
-
-
0003625787
-
-
editedy by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam)
-
W. Götze, in Liquids, Freezing and Glass Transition, editedy by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991).
-
(1991)
Liquids, Freezing and Glass Transition
-
-
Götze, W.1
-
10
-
-
0001337961
-
-
This applies to systems in which hydrodynamic interactions can be neglected: strongly charged suspensions or simulated many-particle systems with Brownian dynamics. For real hard-sphere-like suspensions, neglecting hydrodynamic interactions (or including them via a rescaling procedure [M. Medina-Noyola, Phys. Rev. Lett. 60, 2705 (1988)]) constitutes an additional approximation; the importance of this approximation is largely unknown.
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 2705
-
-
Medina-Noyola, M.1
-
11
-
-
0038501304
-
-
note
-
There are several ways to derive MCT. Here we discuss the original projection operator technique [5] since it is the one used to derive the new theory.
-
-
-
-
12
-
-
0034622709
-
-
see also Ref. [10]
-
Note that for Brownian systems one has to use irreducible memory function [S. J. Pitts and H. C. Andersen, J. Chem. Phys. 113, 3945 (2000]; see also Ref. [10]).
-
(2000)
J. Chem. Phys.
, vol.113
, pp. 3945
-
-
Pitts, S.J.1
Andersen, H.C.2
-
14
-
-
0000763001
-
-
For Newtonian systems expressing the memory function in terms of pair-density correlation function neglects couplings to current modes. Within extended MCT currents restore ergodicity and cut off the ideal glass transition [W. Götze and L. Sjögren, Z. Phys. B 65, 415 (1987)].
-
(1987)
Z. Phys. B
, vol.65
, pp. 415
-
-
Götze, W.1
Sjögren, L.2
-
19
-
-
0000520903
-
-
M. Nauroth and W. Kob, Phys. Rev. E 55, 657 (1997). This work discusses a Newtonian system; within MCT the location of the transition does not depend on the microscopic dynamics [6].
-
(1997)
Phys. Rev. E
, vol.55
, pp. 657
-
-
Nauroth, M.1
Kob, W.2
-
23
-
-
0037824997
-
-
note
-
Following prior works on the colloidal glass transition, hydrodynamic interactions are neglected.
-
-
-
-
24
-
-
0038501303
-
-
note
-
Equation (9) is exact for systems with pair wise-additive interactions.
-
-
-
-
25
-
-
0037487471
-
-
to be published
-
G. Szamel (to be published).
-
-
-
Szamel, G.1
|