메뉴 건너뛰기




Volumn 17, Issue 12, 2000, Pages 2481-2485

Phase-space interferences as the source of negative values of the Wigner distribution function

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; PHASE SPACE METHODS; QUANTUM INTERFERENCE PHENOMENA; QUANTUM OPTICS; REFRACTIVE INDEX; WAVEGUIDES;

EID: 0037765453     PISSN: 10847529     EISSN: 15208532     Source Type: Journal    
DOI: 10.1364/JOSAA.17.002481     Document Type: Article
Times cited : (29)

References (19)
  • 1
    • 33745014742 scopus 로고
    • On the quantum correction for thermodynamic equilibrium
    • E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932).
    • (1932) Phys. Rev. , vol.40 , pp. 749-759
    • Wigner, E.1
  • 2
    • 0040782039 scopus 로고
    • Quantum interference, superposition states of light, and nonclassical effects
    • E. Wolf, ed. (Elsevier, Amsterdam
    • V. Buzek and P. L. Knight, “Quantum interference, superposition states of light, and nonclassical effects,” in Progress in Optics, XXXIV, E. Wolf, ed. (Elsevier, Amsterdam, 1995), pp. 1–158.
    • (1995) Progress in Optics, XXXIV , pp. 1-158
    • Buzek, V.1    Knight, P.L.2
  • 3
    • 0011777486 scopus 로고    scopus 로고
    • The Wigner distribution function in optics and optoelectronics
    • E. Wolf, ed. (Elsevier, Amsterdam
    • D. Dragoman, “The Wigner distribution function in optics and optoelectronics,” in Progress in Optics, XXXVII, E. Wolf, ed. (Elsevier, Amsterdam, 1997), pp. 1–56.
    • (1997) Progress in Optics, XXXVII , pp. 1-56
    • Dragoman, D.1
  • 4
    • 0031362885 scopus 로고    scopus 로고
    • Holographic information in the Wigner function
    • K. B. Wolf and A. L. Rivera, “Holographic information in the Wigner function,” Opt. Commun. 144, 36–42 (1997).
    • (1997) Opt. Commun. , vol.144 , pp. 36-42
    • Wolf, K.B.1    Rivera, A.L.2
  • 5
    • 21844499342 scopus 로고
    • The Wigner transform of solitons solutions for the nonlinear Schrodinger equation
    • H. Konno and P. S. Lomdahl, “The Wigner transform of solitons solutions for the nonlinear Schrodinger equation,” J. Phys. Soc. Jpn. 63, 3967–3973 (1994).
    • (1994) J. Phys. Soc. Jpn. , vol.63 , pp. 3967-3973
    • Konno, H.1    Lomdahl, P.S.2
  • 6
    • 0024705330 scopus 로고
    • Time-frequency distributions—a review
    • L. Cohen, “Time-frequency distributions—a review,” Proc. IEEE 77, 941–981 (1989).
    • (1989) Proc. IEEE , vol.77 , pp. 941-981
    • Cohen, L.1
  • 7
    • 84975562528 scopus 로고
    • Wigner-distribution-function representation of the coupling coefficient
    • D. Dragoman, “Wigner-distribution-function representation of the coupling coefficient,” Appl. Opt. 34, 6758–6763 (1995).
    • (1995) Appl. Opt. , vol.34 , pp. 6758-6763
    • Dragoman, D.1
  • 8
    • 0029375657 scopus 로고
    • Phase space representation of modes in optical waveguides
    • D. Dragoman, “Phase space representation of modes in optical waveguides,” J. Mod. Opt. 42, 1815–1823 (1995).
    • (1995) J. Mod. Opt. , vol.42 , pp. 1815-1823
    • Dragoman, D.1
  • 9
    • 0000293183 scopus 로고
    • Theory of communication
    • D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. 93(III), 429–457 (1946).
    • (1946) J. Inst. Electr. Eng. , vol.93 , Issue.3 , pp. 429-457
    • Gabor, D.1
  • 10
    • 85010162789 scopus 로고
    • The expansion of an optical signal into a discrete set of Gaussian beams
    • M. J. Bastiaans, “The expansion of an optical signal into a discrete set of Gaussian beams,” Optik (Stuttgart) 57, 95102 (1980).
    • (1980) Optik (Stuttgart) , vol.57 , pp. 95102
    • Bastiaans, M.J.1
  • 13
    • 0001218355 scopus 로고
    • When is the Wigner quasi-probability density non negative?
    • R. L. Hudson, “When is the Wigner quasi-probability density non negative?” Rep. Math. Phys. 6, 249–252 (1974).
    • (1974) Rep. Math. Phys. , vol.6 , pp. 249-252
    • Hudson, R.L.1
  • 14
    • 0038584758 scopus 로고
    • A note on Hudsons theorem about functions with non-negative Wigner distributions
    • A. J. E. M. Janssen, “A note on Hudson’s theorem about functions with non-negative Wigner distributions,” SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 15, 170–176 (1984).
    • (1984) SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. , vol.15 , pp. 170-176
    • Janssen, A.J.E.M.1
  • 15
    • 0026244477 scopus 로고
    • Gabors signal expansion applied to partially coherent light
    • M. J. Bastiaans, “Gabor’s signal expansion applied to partially coherent light,” Opt. Commun. 86, 14–18 (1991).
    • (1991) Opt. Commun. , vol.86 , pp. 14-18
    • Bastiaans, M.J.1
  • 16
    • 0028516471 scopus 로고
    • Decomposition of the Wigner-Ville distribution and time-frequency distribution series
    • S. Qian and D. Chen, “Decomposition of the Wigner-Ville distribution and time-frequency distribution series,” IEEE Trans. Signal Process. 42, 2836–2842 (1994).
    • (1994) IEEE Trans. Signal Process. , vol.42 , pp. 2836-2842
    • Qian, S.1    Chen, D.2
  • 17
    • 0031638477 scopus 로고    scopus 로고
    • The Gabor expansion based positive distribution
    • F. Pedersen, “The Gabor expansion based positive distribution,” Proc. IEEE 3, 1565–1568 (1998).
    • (1998) Proc. IEEE , vol.3 , pp. 1565-1568
    • Pedersen, F.1
  • 18
    • 84950652199 scopus 로고
    • The Wigner distribution function of partially coherent light
    • M. J. Bastiaans, “The Wigner distribution function of partially coherent light,” Opt. Acta 28, 1215–1224 (1981).
    • (1981) Opt. Acta , vol.28 , pp. 1215-1224
    • Bastiaans, M.J.1
  • 19
    • 0020722032 scopus 로고
    • Uncertainty principle for partially coherent light
    • M. J. Bastiaans, “Uncertainty principle for partially coherent light,” J. Opt. Soc. Am. 73, 251–255 (1983).
    • (1983) J. Opt. Soc. Am. , vol.73 , pp. 251-255
    • Bastiaans, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.