-
1
-
-
0001046947
-
Extension of the classical Cartan form
-
Betounes, D. E.: Extension of the classical Cartan form, Phys. Rev. D 29 (1984), 599-606.
-
(1984)
Phys. Rev. D
, vol.29
, pp. 599-606
-
-
Betounes, D.E.1
-
2
-
-
0001480777
-
Hamiltonian structures on multisymplectic manifolds
-
Cantrijn, F., Ibort, L. A. and de León, M.: Hamiltonian structures on multisymplectic manifolds, Rend. Sem. Mat. Univ. Pol. Torino 54 (1996), 225-236.
-
(1996)
Rend. Sem. Mat. Univ. Pol. Torino
, vol.54
, pp. 225-236
-
-
Cantrijn, F.1
Ibort, L.A.2
De León, M.3
-
3
-
-
0000233462
-
On the generalization of symplectic geometry to multiple integrals in the calculus of variations
-
Springer, Berlin
-
Dedecker, P.: On the generalization of symplectic geometry to multiple integrals in the calculus of variations, In: Lecture Notes in Math. 570, Springer, Berlin, 1977, pp. 395-456.
-
(1977)
Lecture Notes in Math
, vol.570
, pp. 395-456
-
-
Dedecker, P.1
-
5
-
-
0003759009
-
-
World Scientific, Singapore
-
Giachetta, G., Mangiarotti, L. and Sardanashvily, G.: New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, Singapore, 1997.
-
(1997)
New Lagrangian and Hamiltonian Methods in Field Theory
-
-
Giachetta, G.1
Mangiarotti, L.2
Sardanashvily, G.3
-
6
-
-
0033600674
-
Covariant Hamilton equations for field theory
-
Giachetta, G., Mangiarotti, L. and Sardanashvily, G.: Covariant Hamilton equations for field theory, J. Phys. A: Math. Gen. 32 (1999), 6629-6642.
-
(1999)
J. Phys. A: Math. Gen.
, vol.32
, pp. 6629-6642
-
-
Giachetta, G.1
Mangiarotti, L.2
Sardanashvily, G.3
-
7
-
-
0000082862
-
The Hamilton-Cartan formalism in the calculus of variations
-
Goldschmidt, H. and Sternberg, S.: The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier. Grenoble 23 (1973), 203-267.
-
(1973)
Ann. Inst. Fourier. Grenoble
, vol.23
, pp. 203-267
-
-
Goldschmidt, H.1
Sternberg, S.2
-
8
-
-
0002956967
-
A multisymplectic framework for classical field theory and the calculus of variations, I. Covariant Hamiltonian formalism
-
M. Francaviglia and D. D. Holm (eds), North Holland, Amsterdam
-
Gotay, M. J.: A multisymplectic framework for classical field theory and the calculus of variations, I. Covariant Hamiltonian formalism, In: M. Francaviglia and D. D. Holm (eds) Mechanics, Analysis and Geometry: 200 Years After Lagrange, North Holland, Amsterdam, 1990, pp. 203-235.
-
(1990)
Mechanics, Analysis and Geometry: 200 Years After Lagrange
, pp. 203-235
-
-
Gotay, M.J.1
-
9
-
-
0016424320
-
A geometric theory of ordinary first order variational problems in fibred manifolds, I. Critical sections, II. Invariance
-
Krupka, D.: A geometric theory of ordinary first order variational problems in fibred manifolds, I. Critical sections, II. Invariance J. Math. Anal. Appl. 49 (1975), 180-206; 469-476.
-
(1975)
J. Math. Anal. Appl.
, vol.49
, pp. 180-206
-
-
Krupka, D.1
-
10
-
-
0000682465
-
A map associated to the Lepagean forms of the calculus of variations in fibred manifolds
-
Krupka, D.: A map associated to the Lepagean forms of the calculus of variations in fibred manifolds, Czech. Math. J. 27 (1977), 114-118.
-
(1977)
Czech. Math. J.
, vol.27
, pp. 114-118
-
-
Krupka, D.1
-
11
-
-
0009853068
-
On the higher order Hamilton theory in fibred spaces
-
D. Krupka (ed.), Proc. Conf. Diffferential Geom. Appl., Mové Město na Moravě, 1983, J. E. Purkyně University, Brno, Czechoslovakia
-
Krupka, D.: On the higher order Hamilton theory in fibred spaces, In: D. Krupka (ed.) Geometrical Methods in Physics, Proc. Conf. Diffferential Geom. Appl., Mové Město na Moravě, 1983, J. E. Purkyně University, Brno, Czechoslovakia, 1984, pp. 167-183.
-
(1984)
Geometrical Methods in Physics
, pp. 167-183
-
-
Krupka, D.1
-
12
-
-
0001900730
-
On the Hamilton form in second order calculus of variations
-
M. Modugno (ed.), Proc. Int. Meeting, Florence, Italy, 1982, Pitagora Ed., Bologna
-
Krupka, D. and Štěpánková, O.: On the Hamilton form in second order calculus of variations, In: M. Modugno (ed.) Geometry and Physics, Proc. Int. Meeting, Florence, Italy, 1982, Pitagora Ed., Bologna, 1983, pp. 85-101.
-
(1983)
Geometry and Physics
, pp. 85-101
-
-
Krupka, D.1
Štěpánková, O.2
-
13
-
-
0009822851
-
Hamiltonian field theory revisited: A geometric approach to regularity
-
L. Kozma, P. T. Nagy and L. Tamássy (eds.), Proc. Colloq. Differential Geom., Debrecen, July 2000, University of Debrecen, Debrecen
-
Krupková, O.: Hamiltonian field theory revisited: A geometric approach to regularity, In: L. Kozma, P. T. Nagy and L. Tamássy (eds.) Steps in Differential Geometry, Proc. Colloq. Differential Geom., Debrecen, July 2000, University of Debrecen, Debrecen, 2001, pp. 187-207.
-
(2001)
Steps in Differential Geometry
, pp. 187-207
-
-
Krupková, O.1
-
14
-
-
85016877054
-
Hamiltonian field theory
-
in print
-
Krupková, O.: Hamiltonian field theory, J. Gconi. Phys., in print.
-
J. Gconi. Phys.
-
-
Krupková, O.1
-
15
-
-
0009853240
-
On regularization of variational problems in first-order field theory
-
Krupková, O. and Smetanová, D.: On regularization of variational problems in first-order field theory. Rend. Circ. Mat. Palermo, Série II, Suppl. 66 (2001), 133-140.
-
(2001)
Rend. Circ. Mat. Palermo, Série II, Suppl.
, vol.66
, pp. 133-140
-
-
Krupková, O.1
Smetanová, D.2
-
17
-
-
0013039699
-
Multisymplectic geometry, covariant Hamiltonians, and water waves
-
Marsden, J. E. and Shkoller, S.: Multisymplectic geometry, covariant Hamiltonians, and water waves, Math. Proc. Cambridge. Philos. Soc. 125 (1999), 553-575.
-
(1999)
Math. Proc. Cambridge. Philos. Soc.
, vol.125
, pp. 553-575
-
-
Marsden, J.E.1
-
18
-
-
0009823237
-
The regularity of variational problems
-
Amer. Math. Soc., Providence
-
Saunders, D. J.: The regularity of variational problems, In: Contemp. Math. 132 Amer. Math. Soc., Providence, 1992, pp. 573-593.
-
(1992)
Contemp. Math.
, vol.132
, pp. 573-593
-
-
Saunders, D.J.1
-
19
-
-
0009858481
-
2-equations in second order field theory
-
L. Kozma, P. T. Nagy and L. Tamássy (eds), Proc. Colloq. Differential Geom., Debrecen, July 2000, University of Debrecen, Debrecen
-
2-equations in second order field theory, In: L. Kozma, P. T. Nagy and L. Tamássy (eds) Steps in Differential Geometry, Proc. Colloq. Differential Geom., Debrecen, July 2000, University of Debrecen, Debrecen, 2001, pp. 329-341.
-
(2001)
Steps in Differential Geometry
, pp. 329-341
-
-
Smetanová, D.1
|