-
1
-
-
0001141391
-
On the development of reference priors (with discussion)
-
Edited by J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Oxford University Press, London
-
Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics 4 (Edited by J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), 35-60. Oxford University Press, London.
-
(1992)
Bayesian Statistics
, vol.4
, pp. 35-60
-
-
Berger, J.O.1
Bernardo, J.M.2
-
2
-
-
0002183088
-
Reference posterior distributions for Bayesian inference
-
Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. J. Roy. Statist. Soc. Ser. B 41, 113-147.
-
(1979)
J. Roy. Statist. Soc. Ser. B
, vol.41
, pp. 113-147
-
-
Bernardo, J.M.1
-
3
-
-
0023939810
-
Bayesian inference for ratios of coefficients in a linear model
-
Buonaccorsi, J. P. and Gatsonis, C. A. (1988). Bayesian inference for ratios of coefficients in a linear model. Biometrics 44, 87-101.
-
(1988)
Biometrics
, vol.44
, pp. 87-101
-
-
Buonaccorsi, J.P.1
Gatsonis, C.A.2
-
4
-
-
0002738159
-
Parameter orthogonality and approximate conditional inference
-
Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference. J. Roy. Statist. Soc. Ser. B 49, 1-39.
-
(1987)
J. Roy. Statist. Soc. Ser. B
, vol.49
, pp. 1-39
-
-
Cox, D.R.1
Reid, N.2
-
5
-
-
0013638092
-
A Bayesian approach to parallel line bioassay
-
Darby, S. C. (1980). A Bayesian approach to parallel line bioassay. Biometrika 67, 607-612.
-
(1980)
Biometrika
, vol.67
, pp. 607-612
-
-
Darby, S.C.1
-
6
-
-
0001656190
-
On priors providing frequentist validity of Bayesian inference for multiple parameter functions
-
Datta, G. S. (1996). On priors providing frequentist validity of Bayesian inference for multiple parameter functions. Biometrika 83, 287-298.
-
(1996)
Biometrika
, vol.83
, pp. 287-298
-
-
Datta, G.S.1
-
7
-
-
0002324119
-
On priors providing frequentist validity of Bayesian inference
-
Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity of Bayesian inference. Biometrika 82, 37-45.
-
(1995)
Biometrika
, vol.82
, pp. 37-45
-
-
Datta, G.S.1
Ghosh, J.K.2
-
8
-
-
51249170404
-
Noninformative priors for maximal invariant parameter in group models
-
Datta, G. S. and Ghosh, J. K. (1995b). Noninformative priors for maximal invariant parameter in group models. Test 4, 95-114.
-
(1995)
Test
, vol.4
, pp. 95-114
-
-
Datta, G.S.1
Ghosh, J.K.2
-
9
-
-
21344468866
-
Some remarks on noninformative priors
-
Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors. J. Amer. Statist. Assoc. 90, 1357-1363.
-
(1995)
J. Amer. Statist. Assoc.
, vol.90
, pp. 1357-1363
-
-
Datta, G.S.1
Ghosh, M.2
-
10
-
-
0000991825
-
Some problems in interval estimation
-
Fieller, E. C. (1954). Some problems in interval estimation. J. Roy. Statist. Soc. Ser. B 16, 175-185.
-
(1954)
J. Roy. Statist. Soc. Ser. B
, vol.16
, pp. 175-185
-
-
Fieller, E.C.1
-
12
-
-
51249165787
-
Probability matching priors for linear calibration
-
Ghosh, M., Carlin, B. P. and Srivastava, M. S. (1995). Probability matching priors for linear calibration. Test 4, 333-357.
-
(1995)
Test
, vol.4
, pp. 333-357
-
-
Ghosh, M.1
Carlin, B.P.2
Srivastava, M.S.3
-
13
-
-
0000769201
-
The non-existence of 100(1 - α)% confidence sets of finite expected diameters in error-in-variable and related models
-
Gleser, L. J. and Hwang, J. T. (1987). The non-existence of 100(1 - α)% confidence sets of finite expected diameters in error-in-variable and related models. Ann. Statist. 15, 1351-1362.
-
(1987)
Ann. Statist.
, vol.15
, pp. 1351-1362
-
-
Gleser, L.J.1
Hwang, J.T.2
-
14
-
-
84950638974
-
A Bayesian look at inverse linear regression
-
Hoadley, B. (1970). A Bayesian look at inverse linear regression. J. Amer. Statist. Assoc. 65, 356-369.
-
(1970)
J. Amer. Statist. Assoc.
, vol.65
, pp. 356-369
-
-
Hoadley, B.1
-
15
-
-
0019634538
-
A Bayesian analysis of the linear calibration problem
-
Hunter, W. G. and Lamboy, W. F. (1981). A Bayesian analysis of the linear calibration problem. Technometrics 23, 323-350.
-
(1981)
Technometrics
, vol.23
, pp. 323-350
-
-
Hunter, W.G.1
Lamboy, W.F.2
-
16
-
-
0025755426
-
Estimating relative potency using prior information
-
Kim, P. T., Carter, E. M. and Hubert, J. J. (1991). Estimating relative potency using prior information. Biometrics 47, 295-301.
-
(1991)
Biometrics
, vol.47
, pp. 295-301
-
-
Kim, P.T.1
Carter, E.M.2
Hubert, J.J.3
-
17
-
-
21144465284
-
Shrinkage estimators of relative potency
-
Kim, P. T., Carter, E. M., Hubert, J. J. and Hand, K. J. (1993). Shrinkage estimators of relative potency. J. Amer. Statist. Assoc. 88, 615-621.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, pp. 615-621
-
-
Kim, P.T.1
Carter, E.M.2
Hubert, J.J.3
Hand, K.J.4
-
18
-
-
0000154718
-
Elimination of nuisance parameters with reference priors
-
Liseo, B. (1993). Elimination of nuisance parameters with reference priors. Biometrika 80, 295-304.
-
(1993)
Biometrika
, vol.80
, pp. 295-304
-
-
Liseo, B.1
-
19
-
-
0038378604
-
Inference about the ratio of linear combinations of the coefficients in a multiple regression model
-
Edited by J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, Oxford University Press, London
-
Mendoza, M. (1988). Inference about the ratio of linear combinations of the coefficients in a multiple regression model. In Bayesian Statistics 3 (Edited by J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith), 705-711. Oxford University Press, London.
-
(1988)
Bayesian Statistics
, vol.3
, pp. 705-711
-
-
Mendoza, M.1
-
20
-
-
0025570338
-
A Bayesian analysis of the slope ratio bioassay
-
Mendoza, M. (1990). A Bayesian analysis of the slope ratio bioassay. Biometrics 46, 1059-1069.
-
(1990)
Biometrics
, vol.46
, pp. 1059-1069
-
-
Mendoza, M.1
-
21
-
-
0000800881
-
Frequentist validity of posterior quantiles in the presence of a nuisance parameter: Higher order asymptotics
-
Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter: higher order asymptotics. Biometrika 80, 499-505.
-
(1993)
Biometrika
, vol.80
, pp. 499-505
-
-
Mukerjee, R.1
Dey, D.K.2
-
22
-
-
0001128325
-
Second order probability matching priors
-
Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika 84, 970-975.
-
(1997)
Biometrika
, vol.84
, pp. 970-975
-
-
Mukerjee, R.1
Ghosh, M.2
-
23
-
-
0037702625
-
A note on the confidence properties of reference priors for the calibration model
-
Philippe, A. and Robert, C. (1998). A note on the confidence properties of reference priors for the calibration model. Test 7, 147-160.
-
(1998)
Test
, vol.7
, pp. 147-160
-
-
Philippe, A.1
Robert, C.2
-
24
-
-
0001121085
-
On coverage probability of confidence sets based on a prior distribution
-
Banach Center Publications, Warsaw
-
Stein, C. (1985). On coverage probability of confidence sets based on a prior distribution. In Sequential Methods in Statistics 16, 485-514. Banach Center Publications, Warsaw.
-
(1985)
Sequential Methods in Statistics
, vol.16
, pp. 485-514
-
-
Stein, C.1
-
25
-
-
0002611684
-
Frequentist validity of posterior quantiles for a two-parameter exponential family
-
Sun, D. and Ye, K. (1996). Frequentist validity of posterior quantiles for a two-parameter exponential family. Biometrika 83, 55-65.
-
(1996)
Biometrika
, vol.83
, pp. 55-65
-
-
Sun, D.1
Ye, K.2
-
26
-
-
0001638080
-
Noninformative priors for one parameter of many
-
Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika 76, 604-608.
-
(1989)
Biometrika
, vol.76
, pp. 604-608
-
-
Tibshirani, R.1
-
27
-
-
0001159310
-
On formula for confidence points based on integrals of weighted likelihoods
-
Welch, B. L. and Peers, H. W. (1963). On formula for confidence points based on integrals of weighted likelihoods. J. Roy. Statist. Soc. Ser. B 25, 318-329.
-
(1963)
J. Roy. Statist. Soc. Ser. B
, vol.25
, pp. 318-329
-
-
Welch, B.L.1
Peers, H.W.2
-
28
-
-
0037702632
-
Bayesian and likelihood inference for the generalized fieller-creasy problem
-
Edited by A. E. Ahmed and N. Reid, Springer Verlag, New York
-
Yin, M. and Ghosh, M. (2000). Bayesian and Likelihood Inference for the Generalized Fieller-Creasy problem. In Empirical Bayes and Likelihood Inference (Edited by A. E. Ahmed and N. Reid), 121-139. Springer Verlag, New York.
-
(2000)
Empirical Bayes and Likelihood Inference
, pp. 121-139
-
-
Yin, M.1
Ghosh, M.2
|