-
1
-
-
0011253889
-
Haar-type multiwavelet bases and self-affine multi-tiles
-
T. Flaherty and Y. Wang, Haar-type multiwavelet bases and self-affine multi-tiles, Asian J. Math. 3(2) (1999), 387-400.
-
(1999)
Asian J. Math.
, vol.3
, Issue.2
, pp. 387-400
-
-
Flaherty, T.1
Wang, Y.2
-
2
-
-
0037823560
-
The diffraction pattern of self-similar tilings
-
R. V. Moody and J. Patera, Eds., Kluwer: Norwich, MA
-
F. Gähler and R. Klitzing, The diffraction pattern of self-similar tilings, in: Mathematics of Long-Range Aperiodic Order (R. V. Moody and J. Patera, Eds.), Kluwer: Norwich, MA, 1997, pp. 141-174.
-
(1997)
Mathematics of Long-Range Aperiodic Order
, pp. 141-174
-
-
Gähler, F.1
Klitzing, R.2
-
3
-
-
0038161328
-
The sphinx: A limit periodic tiling of the plane
-
C. Godreche, The sphinx: a limit periodic tiling of the plane, J. Phys. A 22 (1989), L1163-L1168.
-
(1989)
J. Phys. A
, vol.22
-
-
Godreche, C.1
-
4
-
-
18844482736
-
Self-affine tilings with several tiles, I
-
K. Gröchenig, A. Haas, and A. Raugi, Self-affine tilings with several tiles, I, Appl. Comput. Harmon. Anal. 7 (1999), 211-238.
-
(1999)
Appl. Comput. Harmon. Anal.
, vol.7
, pp. 211-238
-
-
Gröchenig, K.1
Haas, A.2
Raugi, A.3
-
5
-
-
0026743540
-
Multiresolution analysis. Haar bases and self-similar tilings
-
K. Gröchenig and W. Madych, Multiresolution analysis. Haar bases and self-similar tilings, IEEE Trans. Inform. Theory IT-38(2) (1992), 556-568.
-
(1992)
IEEE Trans. Inform. Theory
, vol.IT-38
, Issue.2
, pp. 556-568
-
-
Gröchenig, K.1
Madych, W.2
-
8
-
-
0003884783
-
-
Ph.D. thesis, Princeton University, Princeton, NJ
-
R. Kenyon, Self-Similar Tilings, Ph.D. thesis, Princeton University, Princeton, NJ, 1990.
-
(1990)
Self-Similar Tilings
-
-
Kenyon, R.1
-
9
-
-
0000000958
-
Self-replicating tilings
-
P. Walters, Ed., Contemp. Math., AMS: Providence, RI
-
R. Kenyon, Self-replicating tilings, in: Symbolic Dynamics and Its Applications (P. Walters, Ed.), Contemp. Math. Vol. 135, AMS: Providence, RI, 1992, pp. 239-264.
-
(1992)
Symbolic Dynamics and Its Applications
, vol.135
, pp. 239-264
-
-
Kenyon, R.1
-
10
-
-
51249169419
-
Inflationary tilings with a similarity structure
-
R. Kenyon, Inflationary tilings with a similarity structure, Comment. Math. Helv. 69 (1994), 169-198.
-
(1994)
Comment. Math. Helv.
, vol.69
, pp. 169-198
-
-
Kenyon, R.1
-
11
-
-
0030556295
-
The construction of self-similar tilings
-
R. Kenyon, The construction of self-similar tilings, GAFA 6 (1996), 471-488.
-
(1996)
GAFA
, vol.6
, pp. 471-488
-
-
Kenyon, R.1
-
12
-
-
0001523338
-
Projecting the one-dimensional Sierpinski gasket
-
R. Kenyon, Projecting the one-dimensional Sierpinski gasket, Israel J. Math. 97 (1997), 221-238.
-
(1997)
Israel J. Math.
, vol.97
, pp. 221-238
-
-
Kenyon, R.1
-
13
-
-
0003657590
-
-
Addison-Wesley: Reading, MA
-
D. Knuth, The Art of Computer Programming, Vol. II. Seminumerical Algorithms, Second Edition, Addison-Wesley: Reading, MA, 1981.
-
(1981)
The Art of Computer Programming, Vol. II. Seminumerical Algorithms, Second Edition
, vol.2
-
-
Knuth, D.1
-
14
-
-
0030210212
-
Meyer's concept of quasicrystal and quasiregular sets
-
J. C. Lagarias, Meyer's concept of quasicrystal and quasiregular sets, Comm. Math. Phys. 179 (1996), 365-376.
-
(1996)
Comm. Math. Phys.
, vol.179
, pp. 365-376
-
-
Lagarias, J.C.1
-
15
-
-
0033478409
-
Geometric models for quasicrystals, I. Delone sets of finite type
-
J. C. Lagarias, Geometric models for quasicrystals, I. Delone sets of finite type, Discrete Comput. Geom. 21 (1999), 161-191.
-
(1999)
Discrete Comput. Geom.
, vol.21
, pp. 161-191
-
-
Lagarias, J.C.1
-
16
-
-
0033423088
-
Geometric models for quasicrystals, II. Local rules under isometries
-
J. C. Lagarias, Geometric models for quasicrystals, II. Local rules under isometries, Discrete Comput. Geom. 21 (1999), 345-372.
-
(1999)
Discrete Comput. Geom.
, vol.21
, pp. 345-372
-
-
Lagarias, J.C.1
-
17
-
-
0040799572
-
Tiling the line with translates of one tile
-
J. C. Lagarias and Y. Wang, Tiling the line with translates of one tile, Invent. Math. 124 (1996), 341-365.
-
(1996)
Invent. Math.
, vol.124
, pp. 341-365
-
-
Lagarias, J.C.1
Wang, Y.2
-
21
-
-
0035580706
-
Lattice substitution systems and model sets
-
J.-Y. Lee and R. V. Moody, Lattice substitution systems and model sets, Discrete Comput. Geom. 25 (2001), 173-202.
-
(2001)
Discrete Comput. Geom.
, vol.25
, pp. 173-202
-
-
Lee, J.-Y.1
Moody, R.V.2
-
22
-
-
0000072605
-
Quasicrystals: A new class of ordered structures
-
D. Levine and P. J. Steinhardt, Quasicrystals: a new class of ordered structures, Phys. Rev. Lett. 53 (1984), 2477-2480.
-
(1984)
Phys. Rev. Lett.
, vol.53
, pp. 2477-2480
-
-
Levine, D.1
Steinhardt, P.J.2
-
23
-
-
0002101834
-
Dynamic properties of quasihyperbolic toral automorphisms
-
D. Lind, Dynamic properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynamical Systems 2 (1982), 49-68.
-
(1982)
Ergodic Theory Dynamical Systems
, vol.2
, pp. 49-68
-
-
Lind, D.1
-
25
-
-
84966230972
-
Hausdorff dimension in graph directed constructions
-
R. D. Mauldin and S. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), 811-829.
-
(1988)
Trans. Amer. Math. Soc.
, vol.309
, pp. 811-829
-
-
Mauldin, R.D.1
Williams, S.2
-
26
-
-
0037848342
-
Quasicrystals, diophantine approximation and algebraic numbers
-
F. Axel and D. Gratias, Eds., Les Editions de Physique. Springer-Verlag: New York
-
Y. Meyer, Quasicrystals, diophantine approximation and algebraic numbers, in: Beyond Quasicrystals (F. Axel and D. Gratias, Eds.), Les Editions de Physique. Springer-Verlag: New York, 1995. pp. 3-16.
-
(1995)
Beyond Quasicrystals
, pp. 3-16
-
-
Meyer, Y.1
-
27
-
-
0037486032
-
Meyer sets and the finite generation of quasicrystals
-
(B. Gruber, Ed.), Plenum: New York
-
R. V. Moody, Meyer sets and the finite generation of quasicrystals. in: Symmetries in Science VIII (B. Gruber, Ed.), Plenum: New York, 1995.
-
(1995)
Symmetries in Science VIII
, vol.8
-
-
Moody, R.V.1
-
28
-
-
0002421044
-
Meyer sets and their duals
-
R. V. Moody and J. Patera, Eds., Kluwer: Norwell, MA
-
R. V. Moody, Meyer sets and their duals, in: The Mathematics of Long Range Aperiodic Order (R. V. Moody and J. Patera, Eds.), Kluwer: Norwell, MA. 1997, pp. 403-441.
-
(1997)
The Mathematics of Long Range Aperiodic Order
, pp. 403-441
-
-
Moody, R.V.1
-
30
-
-
22644451890
-
Numeration systems and Markov partitions from self-similar tilings
-
B. Praggastis, Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc. 351 (1999), 3315-3349.
-
(1999)
Trans. Amer. Math. Soc.
, vol.351
, pp. 3315-3349
-
-
Praggastis, B.1
-
31
-
-
0003255477
-
Substitution dynamical systems - Spectral analysis
-
Springer-Verlag: New York
-
M. Queffélec, Substitution Dynamical Systems -Spectral Analysis, Lecture Notes in Mathematics No. 1294, Springer-Verlag: New York, 1987.
-
(1987)
Lecture Notes in Mathematics No. 1294
, vol.1294
-
-
Queffélec, M.1
-
32
-
-
0009234666
-
The dynamical theory of tilings and quasicrystallography
-
n -Actions (M. Pollicott and K. Schmidt, Eds.), Cambridge University Press: Cambridge
-
n -Actions (M. Pollicott and K. Schmidt, Eds.), London. Math. Soc. Lecture Notes No. 228, Cambridge University Press: Cambridge, 1996, pp. 451-473.
-
(1996)
London. Math. Soc. Lecture Notes No. 228
, vol.228
, pp. 451-473
-
-
Robinson E.A., Jr.1
-
34
-
-
0036803749
-
Self-affine tilings via substitution dynamical systems and Rauzy fractals
-
V. Sirvent and Y. Wang, Self-affine tilings via substitution dynamical systems and Rauzy fractals, Pacific J. Math. 206 (2002), 465-486.
-
(2002)
Pacific J. Math.
, vol.206
, pp. 465-486
-
-
Sirvent, V.1
Wang, Y.2
-
35
-
-
0031506167
-
Dynamics of self-similar tilings
-
Corrections: ibid. 19 (1999), 1685
-
B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynamical Systems 17 (1997), 695-738. (Corrections: ibid. 19 (1999), 1685.)
-
(1997)
Ergodic Theory Dynamical Systems
, vol.17
, pp. 695-738
-
-
Solomyak, B.1
-
36
-
-
0040350273
-
Non-periodicity implies unique composition for self-similar translationally finite tilings
-
B. Solomyak, Non-periodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom. 20 (1998), 265-279.
-
(1998)
Discrete Comput. Geom.
, vol.20
, pp. 265-279
-
-
Solomyak, B.1
-
37
-
-
0010772333
-
Spectrum of dynamical systems arising from Delone sets
-
J. Patera, Ed., American Mathematical Society: Providence. RI
-
B. Solomyak, Spectrum of dynamical systems arising from Delone sets, in: Quasicrystals and Discrete Geometry (J. Patera, Ed.), American Mathematical Society: Providence. RI, 1998, pp. 265-275.
-
(1998)
Quasicrystals and Discrete Geometry
, pp. 265-275
-
-
Solomyak, B.1
|