메뉴 건너뛰기




Volumn 192, Issue 1, 2003, Pages 188-201

On the nonexistence of finite time bubble trees in symmetric harmonic map heat flows from the disk to the 2-sphere

Author keywords

Blow up; Bubble tree; Harmonic map; Heat flow; Symmetry

Indexed keywords


EID: 0037673619     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-0396(03)00043-3     Document Type: Article
Times cited : (15)

References (11)
  • 3
    • 0002723734 scopus 로고
    • 2
    • J.-M. Coron, et al., (Eds.), Kluwer Academic Publishers, Dordrecht
    • 2, in: J.-M. Coron, et al., (Eds.), Nematics, Kluwer Academic Publishers, Dordrecht, 1990, pp. 37-48.
    • (1990) Nematics , pp. 37-48
    • Chang, K.-C.1    Ding, W.-Y.2
  • 4
    • 84972521494 scopus 로고
    • Finite-time blow-up of the heat flow of harmonic maps from surfaces
    • K.-C. Chang, W.-Y. Ding, R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom. 36 (1992) 507-515.
    • (1992) J. Differential Geom. , vol.36 , pp. 507-515
    • Chang, K.-C.1    Ding, W.-Y.2    Ye, R.3
  • 5
    • 51249165229 scopus 로고
    • Uniqueness of the harmonic map flow from surfaces to general targets
    • A. Freire, Uniqueness of the harmonic map flow from surfaces to general targets, Comment. Math. Helv. 70 (1995) 310-338.
    • (1995) Comment. Math. Helv. , vol.70 , pp. 310-338
    • Freire, A.1
  • 6
    • 0013200078 scopus 로고    scopus 로고
    • Flow alignment in nematic liquid crystals in flow with cylindrical symmetry
    • R. van der Hout, Flow alignment in nematic liquid crystals in flow with cylindrical symmetry, Differential Integral Equations 14 (2) (2001) 189-211.
    • (2001) Differential Integral Equations , vol.14 , Issue.2 , pp. 189-211
    • van der Hout, R.1
  • 7
    • 0000657925 scopus 로고
    • Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation
    • H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA 29 (2) (1982) 401-441.
    • (1982) J. Fac. Sci. Univ. Tokyo Sec. IA , vol.29 , Issue.2 , pp. 401-441
    • Matano, H.1
  • 8
    • 51249177065 scopus 로고
    • On the evolution of harmonic maps of Riemannian surfaces
    • M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Math. Helv. 60 (1985) 558-581.
    • (1985) Math. Helv. , vol.60 , pp. 558-581
    • Struwe, M.1
  • 9
    • 0002341651 scopus 로고    scopus 로고
    • Geometric evolution problems
    • R. Hardt, M. Wolf (Eds.), IAS Park City Mathematics Series, Amer. Math. Soc., Providence, RI
    • M. Struwe, Geometric evolution problems, in: R. Hardt, M. Wolf (Eds.), Nonlinear Partial Differential Equations in Differential Geometry, IAS Park City Mathematics Series, Vol. 2, Amer. Math. Soc., Providence, RI, 1996, pp. 257-339.
    • (1996) Nonlinear Partial Differential Equations in Differential Geometry , vol.2 , pp. 257-339
    • Struwe, M.1
  • 10
    • 0038031045 scopus 로고    scopus 로고
    • An example of a nontrivial bubble tree in the harmonic map heat flow
    • J.C. Wood, et al., (Eds.), CRC Press, Boca Raton, FL
    • P. Topping, An example of a nontrivial bubble tree in the harmonic map heat flow, in: J.C. Wood, et al., (Eds.), Harmonic Morphisms, Harmonic Maps and Related Topics, CRC Press, Boca Raton, FL, 1999.
    • (1999) Harmonic Morphisms, Harmonic Maps and Related Topics
    • Topping, P.1
  • 11
    • 0036350765 scopus 로고    scopus 로고
    • Reverse bubbling and nonuniqueness in the harmonic map flow
    • P. Topping, Reverse bubbling and nonuniqueness in the harmonic map flow, Internat. Math. Res. Notes 10 (2002) 505-520.
    • (2002) Internat. Math. Res. Notes , vol.10 , pp. 505-520
    • Topping, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.