-
8
-
-
0003849463
-
-
edited by J. M. Seminario (Elsevier, Amsterdam)
-
C. Filippi, X. Gonze, and C. J. Umrigar, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. M. Seminario (Elsevier, Amsterdam, 1996).
-
(1996)
Recent Developments and Applications of Modern Density Functional Theory
-
-
Filippi, C.1
Gonze, X.2
Umrigar, C.J.3
-
10
-
-
0000621478
-
-
S. J. A. van Gisbergen, F. Kootstra, P. R. T. Schipper, O. V. Gritsenko, J. G. Snijders, and E. J. Baerends, Phys. Rev. A 57, 2556 (1998).
-
(1998)
Phys. Rev. A
, vol.57
, pp. 2556
-
-
Van Gisbergen, S.J.A.1
Kootstra, F.2
Schipper, P.R.T.3
Gritsenko, O.V.4
Snijders, J.G.5
Baerends, E.J.6
-
19
-
-
0003846693
-
-
edited by V. Anisimov (Gordon and Breach, Amsterdam)
-
T. Grabo, T. Kreibich, S. Kurth, and E. K. U. Gross, in The Strong Coulomb Correlations and Electronic Structure Calculations: Beyond the LDA, edited by V. Anisimov (Gordon and Breach, Amsterdam, 1999).
-
(1999)
The Strong Coulomb Correlations and Electronic Structure Calculations: Beyond the LDA
-
-
Grabo, T.1
Kreibich, T.2
Kurth, S.3
Gross, E.K.U.4
-
20
-
-
0000721099
-
-
A. G. Eguiluz, M. Heinrichsmeier, A. Fleszar, and W. Hanke, Phys. Rev. Lett. 68, 1359 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1359
-
-
Eguiluz, A.G.1
Heinrichsmeier, M.2
Fleszar, A.3
Hanke, W.4
-
30
-
-
0035848291
-
-
A. Facco Bonetti, E. Engel, R. N. Schmid, and R. M. Dreizler, Phys. Rev. Lett. 86, 2241 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2241
-
-
Bonetti, A.F.1
Engel, E.2
Schmid, R.N.3
Dreizler, R.M.4
-
32
-
-
0037794562
-
-
note
-
σ(r,r′;ω) is spin-diagonal. This is not restrictive as long as we linearize the Sham-Schlüter equation in the framework of the collinear spin-density functional theory.
-
-
-
-
33
-
-
0038132269
-
-
note
-
Unless specified, the symbol "Σ" includes both a sum over a discrete spectrum and an integral over a continuum of states, which we do not treat separately for the sake of notational simplicity (as long as the latter does not require special care).
-
-
-
-
37
-
-
0031571921
-
-
M. Städele, J. A. Majewski, P. Vogl, and A. Görling, Phys. Rev. Lett. 79, 2089 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 2089
-
-
Städele, M.1
Majewski, J.A.2
Vogl, P.3
Görling, A.4
-
42
-
-
0038809149
-
-
note
-
RPA(ω).
-
-
-
-
51
-
-
0038471355
-
-
note
-
xc has no poles at the occupied KS energies.
-
-
-
-
52
-
-
0038471357
-
-
note
-
snσ(r)'s as defined in Sec. III C.
-
-
-
-
57
-
-
0038132270
-
-
note
-
(c)(r) have different analytical properties, although their functional forms are similar (see Appendix A and note 54). For the sake of simplicity, we restrict ourselves to the (practically) relevant case of a system with a discrete spectrum (e.g., a finite system with hard-wall or periodic boundary conditions, or a finite basis set implementation of the OEP equation).
-
-
-
-
58
-
-
0038471356
-
-
note
-
(b)(r), we put the system in a box of volume Ω with hard-wall or periodic boundary conditions, solve Eq. (75) for the potential then take the limit Ω → ∞ (see Appendix B).
-
-
-
-
60
-
-
0038809150
-
-
note
-
(a)(r)] has nonvanishing integral (due to this Cauchy's principal value). This condition is still satisfied however for the class of functionals defined in Sec. II B.
-
-
-
|