-
2
-
-
0008053874
-
-
T. Saito, A. Ito, and K. Tanaka, J. Phys. Chem. 102, 8021, (1998).
-
(1998)
J. Phys. Chem.
, vol.102
, pp. 8021
-
-
Saito, T.1
Ito, A.2
Tanaka, K.3
-
8
-
-
0000122623
-
-
T. D. Selby, K. R. Stickley, and S. C. Blackstock, Org. Lett. 2, 171, (2000).
-
(2000)
Org. Lett.
, vol.2
, pp. 171
-
-
Selby, T.D.1
Stickley, K.R.2
Blackstock, S.C.3
-
10
-
-
0000385349
-
-
T. Weyland, K. Costuas, A. Mari, J. Halet, and C. Lapinte, Organometallics 17, 5569 (1998).
-
(1998)
Organometallics
, vol.17
, pp. 5569
-
-
Weyland, T.1
Costuas, K.2
Mari, A.3
Halet, J.4
Lapinte, C.5
-
11
-
-
0034802168
-
-
Y. Hosokoshi, K. Katoh, Y. Nakazawa, H. Nakano, and K. Inoue, J. Am. Chem. Soc. 123, 7927 (2001).
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 7921
-
-
Hosokoshi, Y.1
Katoh, K.2
Nakazawa, Y.3
Nakano, H.4
Inoue, K.5
-
17
-
-
0035933457
-
-
T. D. Crawford, E. Kraka, J. F. Stanton, and D. Cremer, J. Chem. Phys. 114, 10638 (2001).
-
(2001)
J. Chem. Phys.
, vol.114
, pp. 10638
-
-
Crawford, T.D.1
Kraka, E.2
Stanton, J.F.3
Cremer, D.4
-
19
-
-
0029777487
-
-
J. G. Radziszewski, M. R. Nimlos, P. R. Winter, and G. B. Ellison, J. Am. Chem. Soc. 118, 7400 (1996).
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 7400
-
-
Radziszewski, J.G.1
Nimlos, M.R.2
Winter, P.R.3
Ellison, G.B.4
-
21
-
-
0037164042
-
-
H. A. Lardin, J. J. Nash, and P. G. Wenthold, J. Am. Chem. Soc. 124, 12 612 (2002).
-
(2002)
J. Am. Chem. Soc.
, vol.124
, Issue.12
, pp. 612
-
-
Lardin, H.A.1
Nash, J.J.2
Wenthold, P.G.3
-
23
-
-
0000170421
-
-
P. v. R. Schleyer, H. Jiao, M. N. Glukhovtsev, J. Chandrasekhar, and E. Kraka, J. Am. Chem. Soc. 116, 10129 (1994).
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 10129
-
-
Schleyer, P.V.R.1
Jiao, H.2
Glukhovtsev, M.N.3
Chandrasekhar, J.4
Kraka, E.5
-
33
-
-
0000458644
-
-
C. D. Sherrill, A. I. Krylov, E. F. C. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 4171 (1998).
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 4171
-
-
Sherrill, C.D.1
Krylov, A.I.2
Byrd, E.F.C.3
Head-Gordon, M.4
-
37
-
-
0002265510
-
-
K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T. Elbert, Chem. Phys. 71, 41 (1982).
-
(1982)
Chem. Phys.
, vol.71
, pp. 41
-
-
Ruedenberg, K.1
Schmidt, M.W.2
Gilbert, M.M.3
Elbert, S.T.4
-
39
-
-
26844534384
-
-
R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
-
(1980)
J. Chem. Phys.
, vol.72
, pp. 650
-
-
Krishnan, R.1
Binkley, J.S.2
Seeger, R.3
Pople, J.A.4
-
42
-
-
0037793709
-
-
note
-
Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institue for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.
-
-
-
-
44
-
-
0038808283
-
-
note
-
J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, computer code ACES II, 1993. The package also contains modified versions of the Molecule Gaussian integral program of J. Almlöf and P. R. Taylor, the Abacus integral derivative program written by T. U. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and P. R. Taylor, and the Props property evaluation integral code of P. R. Taylor.
-
(1993)
Computer Code ACES II
-
-
Stanton, J.F.1
Gauss, J.2
Watts, J.D.3
Lauderdale, W.J.4
Bartlett, R.J.5
-
47
-
-
0011564270
-
-
note
-
In a system with a threefold axis the potential surface of the Jahn-Teller distortions consists of three equivalent minima and three transition states connecting them [E. R. Davidson and W. T. Borden, J. Phys. Chem. 87, 4783 (1983)]. Pseudorotation between each pair of the equivalent minima proceeds through one of the equivalent transition states and vice versa.
-
(1983)
J. Phys. Chem.
, vol.87
, pp. 4783
-
-
Davidson, E.R.1
Borden, W.T.2
-
48
-
-
0038808284
-
-
note
-
2 undergoes a second-order Jahn-Teller distortion by rotating one of the methylene groups and disrupting the conjugated π-system of the molecule.
-
-
-
-
51
-
-
0038131419
-
-
note
-
The singlet-triplet adiabatic energy separation is less than 1 kcal/mol on the SF-DFT/6-311 + + G** level, the singlet state being lower in energy.
-
-
-
-
52
-
-
0030123830
-
-
note
-
This is similar to some excited states in radicals [D. Maurice and M. Head-Gordon, J. Phys. Chem. 100, 6131 (1996)]. Despite this, the EOM-CCSD method treats such states accurately.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 6131
-
-
Maurice, D.1
Head-Gordon, M.2
-
53
-
-
0038131418
-
-
note
-
The active space includes all orbitals and electrons shows in Fig. 3, i.e., six π orbitals and three σ orbitals, and nine electrons (9 × 9). Root averaging was used to calculate the degenerate states.
-
-
-
-
55
-
-
0037793708
-
-
note
-
1 state of 1,3,5-tridehydrobenzene.
-
-
-
-
56
-
-
0003929557
-
-
National Bureau of Standards (U.S. GPO, Washington, D.C.)
-
T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated, National Bureau of Standards (U.S. GPO, Washington, D.C., 1972), Vol. I.
-
(1972)
Tables of Molecular Vibrational Frequencies Consolidated
, vol.1
-
-
Shimanouchi, T.1
|