-
1
-
-
0010141835
-
Topology of Diophantine sets: Remarks on Mazur's conjectures
-
Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry (Ghent, 1999) (J. Denef, L. Lipshitz, T. Pheidas, and J. Van Geel, eds.), American Mathematical Society, Rhode Island
-
G. Cornelissen and K. Zahidi, Topology of Diophantine sets: remarks on Mazur's conjectures, Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry (Ghent, 1999) (J. Denef, L. Lipshitz, T. Pheidas, and J. Van Geel, eds.), Contemp. Math., vol. 270, American Mathematical Society, Rhode Island, 2000, pp. 253-260.
-
(2000)
Contemp. Math.
, vol.270
, pp. 253-260
-
-
Cornelissen, G.1
Zahidi, K.2
-
2
-
-
0001739587
-
Hilbert's tenth problem is unsolvable
-
M. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269.
-
(1973)
Amer. Math. Monthly
, vol.80
, pp. 233-269
-
-
Davis, M.1
-
3
-
-
0001540194
-
Hilbert's tenth problem: Diophantine equations: Positive aspects of a negative solution
-
Mathematical Developments Arising from Hubert Problems, Northern Illinois Univ., De Kalb, Ill., American Mathematical Society, Rhode Island, 1976
-
M. Davis, Yu. Matijasevič, and J. Robinson, Hilbert's tenth problem: Diophantine equations: positive aspects of a negative solution, Mathematical Developments Arising from Hubert Problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), American Mathematical Society, Rhode Island, 1976, pp. 323-378.
-
(1974)
Proc. Sympos. Pure Math.
, vol.28
, pp. 323-378
-
-
Davis, M.1
Matijasevič, Yu.2
Robinson, J.3
-
4
-
-
84968502651
-
Hilbert's tenth problem for quadratic rings
-
J. Denef, Hilbert's tenth problem for quadratic rings, Proc. Amer. Math. Soc. 48 (1975), 214-220.
-
(1975)
Proc. Amer. Math. Soc.
, vol.48
, pp. 214-220
-
-
Denef, J.1
-
5
-
-
84968468380
-
Diophantine sets over algebraic integer rings. II
-
_, Diophantine sets over algebraic integer rings. II, Trans. Amer. Math. Soc. 257 (1980), no. 1, 227-236.
-
(1980)
Trans. Amer. Math. Soc.
, vol.257
, Issue.1
, pp. 227-236
-
-
-
6
-
-
84959741166
-
Diophantine sets over some rings of algebraic integers
-
J. Denef and L. Lipshitz, Diophantine sets over some rings of algebraic integers, J. London Math. Soc. (2) 18 (1978), no. 3, 385-391.
-
(1978)
J. London Math. Soc. (2)
, vol.18
, Issue.3
, pp. 385-391
-
-
Denef, J.1
Lipshitz, L.2
-
7
-
-
0002309916
-
Algebraic number fields
-
Academic Press, New York
-
G. J. Janusz, Algebraic Number Fields, Pure and Applied Mathematics, vol. 55, Academic Press, New York, 1973.
-
(1973)
Pure and Applied Mathematics
, vol.55
-
-
Janusz, G.J.1
-
8
-
-
0002696360
-
The topology of rational points
-
B. Mazur, The topology of rational points, Experiment. Math. 1 (1992), no. 1, 35-45.
-
(1992)
Experiment. Math.
, vol.1
, Issue.1
, pp. 35-45
-
-
Mazur, B.1
-
9
-
-
0000828467
-
Questions of decidability and undecidability in number theory
-
_, Questions of decidability and undecidability in number theory, J. Symbolic Logic 59 (1994), no. 2, 353-371.
-
(1994)
J. Symbolic Logic
, vol.59
, Issue.2
, pp. 353-371
-
-
-
10
-
-
0000924389
-
Speculations about the topology of rational points: An update
-
_, Speculations about the topology of rational points: an update, Astérisque (1995), no. 228, 165-182.
-
(1995)
Astérisque
, Issue.228
, pp. 165-182
-
-
-
11
-
-
0010124278
-
Open problems regarding rational points on curves and varieties
-
Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996) (A. J. Scholl and R. L. Taylor, eds.) Cambridge University Press, Cambridge
-
_, Open problems regarding rational points on curves and varieties, Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996) (A. J. Scholl and R. L. Taylor, eds.), London Math. Soc. Lecture Note Ser., vol. 254, Cambridge University Press, Cambridge, 1998, pp. 239-265.
-
(1998)
London Math. Soc. Lecture Note Ser.
, vol.254
, pp. 239-265
-
-
-
12
-
-
0000753481
-
Hilbert's tenth problem for a class of rings of algebraic integers
-
T. Pheidas, Hilbert's tenth problem for a class of rings of algebraic integers, Proc. Amer. Math. Soc. 104 (1988), no. 2, 611-620.
-
(1988)
Proc. Amer. Math. Soc.
, vol.104
, Issue.2
, pp. 611-620
-
-
Pheidas, T.1
-
13
-
-
0038038579
-
An effort to prove that the existential theory of Q is undecidable
-
Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry (Ghent, 1999) (J. Denef, L. Lipshitz, T. Pheidas, and J. Van Geel, eds.), American Mathematical Society, Rhode Island
-
_, An effort to prove that the existential theory of Q is undecidable, Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry (Ghent, 1999) (J. Denef, L. Lipshitz, T. Pheidas, and J. Van Geel, eds.), Contemp. Math., vol. 270, American Mathematical Society, Rhode Island, 2000, pp. 237-252.
-
(2000)
Contemp. Math.
, vol.270
, pp. 237-252
-
-
-
14
-
-
84990553397
-
Diophantine relationships between algebraic number fields
-
H. N. Shapiro and A. Shlapentokh, Diophantine relationships between algebraic number fields, Comm. Pure Appl. Math. 42 (1989), no. 8, 1113-1122.
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, Issue.8
, pp. 1113-1122
-
-
Shapiro, H.N.1
Shlapentokh, A.2
-
15
-
-
84990627039
-
Extension of Hilbert's tenth problem to some algebraic number fields
-
A. Shlapentokh, Extension of Hilbert's tenth problem to some algebraic number fields, Comm. Pure Appl. Math. 42 (1989), no. 7, 939-962.
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, Issue.7
, pp. 939-962
-
-
Shlapentokh, A.1
-
16
-
-
0031489559
-
Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator
-
_, Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator, Invent. Math. 129 (1997), no. 3, 489-507.
-
(1997)
Invent. Math.
, vol.129
, Issue.3
, pp. 489-507
-
-
-
17
-
-
0034649898
-
Defining integrality at prime sets of high density in number fields
-
_, Defining integrality at prime sets of high density in number fields, Duke Math. J. 101 (2000), no. 1, 117-134.
-
(2000)
Duke Math. J.
, vol.101
, Issue.1
, pp. 117-134
-
-
-
18
-
-
0038038583
-
Hilbert's tenth problem over number fields, a survey
-
Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry (Ghent, 1999) (J. Denef, L. Lipshitz, T. Pheidas, and J. Van Geel, eds.), American Mathematical Society, Rhode Island
-
_, Hilbert's tenth problem over number fields, a survey, Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry (Ghent, 1999) (J. Denef, L. Lipshitz, T. Pheidas, and J. Van Geel, eds.), Contemp. Math., vol. 270, American Mathematical Society, Rhode Island, 2000, pp. 107-137.
-
(2000)
Contemp. Math.
, vol.270
, pp. 107-137
-
-
|