메뉴 건너뛰기




Volumn 93, Issue 10 1, 2003, Pages 6068-6077

Electronic noise due to multiple trap levels in homogeneous solids and in space-charge layers

Author keywords

[No Author keywords available]

Indexed keywords

BAND STRUCTURE; ELECTRIC CURRENTS; ELECTRIC SPACE CHARGE; MATHEMATICAL MODELS;

EID: 0037636509     PISSN: 00218979     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.1563291     Document Type: Article
Times cited : (7)

References (44)
  • 2
    • 84977586068 scopus 로고
    • A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905); 19, 371 (1906).
    • (1906) Ann. Phys. (Leipzig) , vol.19 , pp. 371
  • 21
    • 0038479729 scopus 로고
    • Ph.D. thesis MIT
    • A. L. McWhorter, Ph.D. thesis MIT, 1955.
    • (1955)
    • McWhorter, A.L.1
  • 30
    • 0038140801 scopus 로고    scopus 로고
    • 1≫1, the integral Eq. (34) must be redone.
    • 1≫1, the integral Eq. (34) must be redone.
  • 35
    • 0037803193 scopus 로고    scopus 로고
    • note
    • i(r,t).
  • 37
    • 0038140800 scopus 로고    scopus 로고
    • note
    • In quantum statistical mechanics a leeway δε is often necessitated because the external variables which define the ensemble do not commute with the Hamiltonian H; see N. G. van Kampen, in Fundamental Problems in Statistical Mechanics, edited by E. G. D. Cohen (North Holland, Amsterdam, 1962), pp. 173-202.
  • 40
    • 0004073624 scopus 로고
    • Cambridge University Press, Cambridge, see Eqs. (2114) and (2115)
    • R. H. Fowler, Statistical Mechanics, 2nd ed (Cambridge University Press, Cambridge, 1936 and 1966), see Eqs. (2114) and (2115).
    • (1936) Statistical Mechanics, 2nd Ed
    • Fowler, R.H.1
  • 41
    • 0038479727 scopus 로고
    • Notes de Cours, Département de Physique, Université de Montreal, Montréal, (unpublished)
    • C. M. Van Vliet, Generalized Canonical Ensembles, Notes de Cours, Département de Physique, Université de Montreal, Montréal, 1985 (unpublished).
    • (1985) Generalized Canonical Ensembles
    • Van Vliet, C.M.1
  • 42
    • 0037803194 scopus 로고    scopus 로고
    • note
    • i).
  • 43
    • 0038479731 scopus 로고    scopus 로고
    • note
    • β)/Z(ε), where Z(ε) is the density of states for a parabolic band; the result Eq. (A.21) is obtained after an integration by parts.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.