-
1
-
-
0001847686
-
Domain theory
-
S. Abramsky, D. M. Gabbay and T. S. E. Maibaum (eds), Clarendon Press
-
Abramsky, S. and Jung, A.: Domain theory, in S. Abramsky, D. M. Gabbay and T. S. E. Maibaum (eds), Handbook of Logic in Computer Science, Vol. 3, Clarendon Press, 1994, pp. 1-168.
-
(1994)
Handbook of Logic in Computer Science
, vol.3
, pp. 1-168
-
-
Abramsky, S.1
Jung, A.2
-
2
-
-
0002574415
-
A computational model for metric spaces
-
Edalat, A. and Heckmann, R.: A computational model for metric spaces, Theoretical Computer Science 193(1-2) (1998), 53-73.
-
(1998)
Theoretical Computer Science
, vol.193
, Issue.1-2
, pp. 53-73
-
-
Edalat, A.1
Heckmann, R.2
-
4
-
-
0031461105
-
Quantales and continuity spaces
-
Flagg, R. C.: Quantales and continuity spaces, Algebra Universalis 37(3) (1997), 257-276.
-
(1997)
Algebra Universalis
, vol.37
, Issue.3
, pp. 257-276
-
-
Flagg, R.C.1
-
5
-
-
0031125836
-
Continuity spaces: Reconciling domains and metric spaces
-
Flagg, B. and Kopperman, R.: Continuity spaces: Reconciling domains and metric spaces, Theoretical Computer Science 177(1) (1997), 111-138.
-
(1997)
Theoretical Computer Science
, vol.177
, Issue.1
, pp. 111-138
-
-
Flagg, B.1
Kopperman, R.2
-
7
-
-
0004011095
-
-
Springer-Verlag, Berlin
-
Gierz, G. K., Hoffmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W. and Scott, D. S.: A Compendium of Continuous Lattices, Springer-Verlag, Berlin, 1980.
-
(1980)
A Compendium of Continuous Lattices
-
-
Gierz, G.K.1
Hoffmann, K.H.2
Keimel, K.3
Lawson, J.D.4
Mislove, M.W.5
Scott, D.S.6
-
9
-
-
0037879732
-
Approximation of metric spaces by partial metric spaces
-
Heckmann, R.: Approximation of metric spaces by partial metric spaces, Applied Categorical Structures 7 (1999), 71-83.
-
(1999)
Applied Categorical Structures
, vol.7
, pp. 71-83
-
-
Heckmann, R.1
-
10
-
-
0013457461
-
Local compactness and continuous lattices
-
in B. Banaschewski and R.-E. Hoffmann (eds), Continuous Lattices, Proceedings Bremen, Springer-Verlag
-
Hofmann, K. H. and Mislove, M.: Local compactness and continuous lattices, in B. Banaschewski and R.-E. Hoffmann (eds), Continuous Lattices, Proceedings Bremen 1979, Lecture Notes in Mathematics 871, Springer-Verlag, 1981, pp. 209-248.
-
(1979)
Lecture Notes in Mathematics
, vol.871
, pp. 209-248
-
-
Hofmann, K.H.1
Mislove, M.2
-
11
-
-
33645319047
-
Weighted quasi-metrics
-
Künzi, H.-P. and Vajner, V.: Weighted quasi-metrics, in Proceedings of the 8th Summer Conference on Topology and Its Applications, Vol. 728, 1992, pp. 64-77.
-
(1992)
Proceedings of the 8th Summer Conference on Topology and Its Applications
, vol.728
, pp. 64-77
-
-
Künzi, H.-P.1
Vajner, V.2
-
13
-
-
0041528401
-
The regular spaces with countably based models
-
to appear
-
Martin, K.: The regular spaces with countably based models, Theoretical Computer Science, to appear.
-
Theoretical Computer Science
-
-
Martin, K.1
-
14
-
-
0038555985
-
-
PhD thesis, Department of Mathematics, Tulane University, New Orleans, LA 70118
-
Martin, K.: A foundation for computation, PhD thesis, Department of Mathematics, Tulane University, New Orleans, LA 70118, 2000.
-
(2000)
A Foundation for Computation
-
-
Martin, K.1
-
16
-
-
0038555975
-
-
Research Report CS-RR-293, Department of Computer Science, University of Warwick, Coventry, UK, October
-
O'Neill, S. J.: Partial metrics, valuations and domain theory, Research Report CS-RR-293, Department of Computer Science, University of Warwick, Coventry, UK, October 1995.
-
(1995)
Partial Metrics, Valuations and Domain Theory
-
-
O'Neill, S.J.1
-
17
-
-
0038555976
-
-
Research Report CS-RR-283, Department of Computer Science, University of Warwick, Coventry, UK, March
-
O'Neill, S. J.: Two topologies are better than one, Research Report CS-RR-283, Department of Computer Science, University of Warwick, Coventry, UK, March 1995.
-
(1995)
Two Topologies are Better Than One
-
-
O'Neill, S.J.1
-
20
-
-
0038217252
-
A characterization of partial metrizability
-
Domains are quantifiable, to appear in
-
Schellekens, M. P.: A characterization of partial metrizability. Domains are quantifiable, to appear in Theoretical Computer Science.
-
Theoretical Computer Science
-
-
Schellekens, M.P.1
-
21
-
-
85034837164
-
Quasi-uniformities: Reconciling domains and metric spaces
-
M. Main, A. Melton, M. Mislove and D. Schmidt (eds), Proceedings of the Workshop on Mathematical Foundations of Programming Language Semantics, Springer, New York
-
Smyth, M. B.: Quasi-uniformities: Reconciling domains and metric spaces, in M. Main, A. Melton, M. Mislove and D. Schmidt (eds), Proceedings of the Workshop on Mathematical Foundations of Programming Language Semantics, Lecture Notes in Computer Science 298, Springer, New York, 1988, pp. 236-253.
-
(1988)
Lecture Notes in Computer Science
, vol.298
, pp. 236-253
-
-
Smyth, M.B.1
-
22
-
-
0037541723
-
-
PhD thesis, School of Computer Science, The University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK, May
-
Waszkiewicz, P.: Quantitative continuous domains, PhD thesis, School of Computer Science, The University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK, May 2002.
-
(2002)
Quantitative Continuous Domains
-
-
Waszkiewicz, P.1
|