-
9
-
-
0003691440
-
-
edited by W. T. Borden (Wiley, New York)
-
Diradicals, edited by W. T. Borden (Wiley, New York, 1982).
-
(1982)
Diradicals
-
-
-
12
-
-
0001040438
-
-
D. Feller, K. Tanaka, E.R. Davidson, and W. T. Borden, J. Am. Chem. Soc. 104, 967 (1982).
-
(1982)
J. Am. Chem. Soc.
, vol.104
, pp. 967
-
-
Feller, D.1
Tanaka, K.2
Davidson, E.R.3
Borden, W.T.4
-
13
-
-
0000060531
-
-
S. B. Lewis, D. A. Hrovat, S. J. Getty, and W. T. Borden, J. Chem. Soc., Perkin Trans. 2 2, 2339 (1999).
-
(1999)
J. Chem. Soc., Perkin Trans. 2
, vol.2
, pp. 2339
-
-
Lewis, S.B.1
Hrovat, D.A.2
Getty, S.J.3
Borden, W.T.4
-
19
-
-
33947093106
-
-
D. A. Dixon, R. Foster, T. A. Halgren, and W. N. Lipscomb, J. Am. Chem. Soc. 100, 1359 (1978).
-
(1978)
J. Am. Chem. Soc.
, vol.100
, pp. 1359
-
-
Dixon, D.A.1
Foster, R.2
Halgren, T.A.3
Lipscomb, W.N.4
-
33
-
-
33847799470
-
-
R. J. Baseman, D. W. Pratt, M. Chow, and P. Dowd, J. Am. Chem. Soc. 98, 5726 (1976).
-
(1976)
J. Am. Chem. Soc.
, vol.98
, pp. 5726
-
-
Baseman, R.J.1
Pratt, D.W.2
Chow, M.3
Dowd, P.4
-
36
-
-
0002388201
-
-
G. Maier, H. P. Reisenauer, K. Lanz, R. Tross, D. Jurgen, B. A. Hess, Jr., and L. D. Schaad, Angew. Chem. Int. Ed. Engl. 32, 74 (1993).
-
(1993)
Angew. Chem. Int. Ed. Engl.
, vol.32
, pp. 74
-
-
Maier, G.1
Reisenauer, H.P.2
Lanz, K.3
Tross, R.4
Jurgen, D.5
Hess B.A., Jr.6
Schaad, L.D.7
-
37
-
-
21844516338
-
-
G. Maier, D. Järgen, R. Tross, H. P. Reisenauer, B. A. Hess, Jr., and L. J. Schaad, Chem. Phys. 189, 383 (1994).
-
(1994)
Chem. Phys.
, vol.189
, pp. 383
-
-
Maier, G.1
Järgen, D.2
Tross, R.3
Reisenauer, H.P.4
Hess B.A., Jr.5
Schaad, L.J.6
-
38
-
-
0000502494
-
-
P. G. Wenthold, J. Hu, R. R. Squires, and W. C. Lineberger, J. Am. Chem. Soc. 118, 475 (1996).
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 475
-
-
Wenthold, P.G.1
Hu, J.2
Squires, R.R.3
Lineberger, W.C.4
-
39
-
-
0033474604
-
-
P. G. Wenthold, J. Hu, R. R. Squires, and W. C. Lineberger, J. Am. Soc. Mass Spectrom. 10, 800 (1999).
-
(1999)
J. Am. Soc. Mass Spectrom.
, vol.10
, pp. 800
-
-
Wenthold, P.G.1
Hu, J.2
Squires, R.R.3
Lineberger, W.C.4
-
43
-
-
0345323111
-
-
S. J. Jacobs, D. A. Schultz, R. Jain, J. Novak, and D. A. Dougherty, J. Am. Chem. Soc. 115, 1744 (1993).
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 1744
-
-
Jacobs, S.J.1
Schultz, D.A.2
Jain, R.3
Novak, J.4
Dougherty, D.A.5
-
54
-
-
0038683922
-
-
note
-
Note that due to the Pauli principle the spatial parts of singlets are symmetric with respect to the interchange of two electrons, whereas the spatial parts of triplets are antisymmetric. This causes all the two-electron triplet states to be purely covalent. The physical explanation of this formal result is that the Pauli principle does not allow two electrons with the same spin to coexist in the same volume of space, as required in ionic (or switter-ionic) configurations. The character of the single states depend on the nature of the orbitals, and can vary from purely ionic of purely covalent wave functions. A detailed analysis of the diradical wave functions can be found in Refs. 9, 49, 51-53.
-
-
-
-
56
-
-
0002265510
-
-
K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T. Elbert, Chem. Phys. 71, 41 (1982).
-
(1982)
Chem. Phys.
, vol.71
, pp. 41
-
-
Ruedenberg, K.1
Schmidt, M.W.2
Gilbert, M.M.3
Elbert, S.T.4
-
58
-
-
0038007326
-
-
note
-
3h TMM), unless state-averaged orbital optimization is performed.
-
-
-
-
59
-
-
0004036401
-
-
(Wiley, New York)
-
B. O. Roos, P. Bruna and S. D. Peyerimhoff; R. Shepard; and D. L. Cooper, J. Gerratt, and M. Raimondi, in Ab Initio Methods in Quantum Chemistry, II (Wiley, New York, 1987).
-
(1987)
Ab Initio Methods in Quantum Chemistry, II
-
-
Roos, B.O.1
Bruna, P.2
Peyerimhoff, S.D.3
Shepard, R.4
Cooper, D.L.5
Gerratt, J.6
Raimondi, M.7
-
60
-
-
0013004607
-
-
K. Andersson, P.-A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys. Chem. 94, 5483 (1990).
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 5483
-
-
Andersson, K.1
Malmqvist, P.-A.2
Roos, B.O.3
Sadlej, A.J.4
Wolinski, K.5
-
63
-
-
0003748990
-
-
edited by K. Hirao (World Scientific, Singapore)
-
Recent Advances in Multireference Methods, edited by K. Hirao (World Scientific, Singapore, 1999).
-
(1999)
Recent Advances in Multireference Methods
-
-
-
70
-
-
0000703066
-
-
J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 135
-
-
Foresman, J.B.1
Head-Gordon, M.2
Pople, J.A.3
Frisch, M.J.4
-
71
-
-
0001812255
-
-
M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee, Chem. Phys. Lett. 219, 21 (1994).
-
(1994)
Chem. Phys. Lett.
, vol.219
, pp. 21
-
-
Head-Gordon, M.1
Rico, R.J.2
Oumi, M.3
Lee, T.J.4
-
80
-
-
0038345419
-
-
note
-
We used the functional composed of the equal mixture of the following exchange and correlation parts: 50% Hartree-Fock+ 8% Slater+ 42% Becke for exchange, 19% VWN+ 81% LYP for correlation.
-
-
-
-
85
-
-
0001414996
-
-
J. Kong, C. A. White, A. I. Krylov, et al., J. Comput. Chem. 21, 1532 (2000).
-
(2000)
J. Comput. Chem.
, vol.21
, pp. 1532
-
-
Kong, J.1
White, C.A.2
Krylov, A.I.3
-
86
-
-
0004040379
-
-
note
-
J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, ACES II, 1993. The package also contains modified versions of the MOLECULE Gaussian integral program of J. Almlöf and P. R. Taylor, the ABACUS integral derivative program written by T. U. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and P. R. Taylor, and the PROPS property evaluation integral code of P. R. Taylor.
-
(1993)
ACES II
-
-
Stanton, J.F.1
Gauss, J.2
Watts, J.D.3
Lauderdale, W.J.4
Bartlett, R.J.5
-
88
-
-
0037669544
-
-
note
-
2 states calculated from the triplet and quintet references are 6.005 and 4.610 eV, respectively.
-
-
-
-
92
-
-
0001181172
-
-
note
-
2-hybridized atoms are available for bonding, the bond order increases due to π bonding, and the bond contracts further.
-
-
-
-
95
-
-
0038683889
-
-
note
-
The equilibrium structure of ethylene is calculated at the CCSD(T)/cc-pVTZ level. The experimental CC bond in the ethylene equals 1.339 Å (Ref. 107). The discrepancy is much larger than the method's intrinsic error of about 0.002 Å and is due to anharmonicity.
-
-
-
-
96
-
-
0038345375
-
-
note
-
2 hybridized carbons
-
-
-
-
99
-
-
0038007334
-
-
note
-
Again, as in case of ethylene, the experimental (1.399 Å, Ref. 107) and high level theoretical (1.391 Å, Ref. 103) CC bond lengths are very different due to anharmonicities.
-
-
-
-
101
-
-
0004025318
-
-
Theoretical Chemistry Institute, University of Wisconsin, Madison, WI
-
E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO 4.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 1996.
-
(1996)
NBO 4.0
-
-
Glendening, E.D.1
Badenhoop, J.K.2
Reed, A.E.3
Carpenter, J.E.4
Weinhold, F.5
-
103
-
-
0011030758
-
-
Theoretical Chemistry Institute, University of Wisconsin, Madison, WI
-
E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. A. Morales, and F. Weinhold, NBO 5.0 Program, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001.
-
(2001)
NBO 5.0 Program
-
-
Glendening, E.D.1
Badenhoop, J.K.2
Reed, A.E.3
Carpenter, J.E.4
Bohmann, J.A.5
Morales, C.A.6
Weinhold, F.7
-
104
-
-
0037669546
-
-
note
-
The experimentally measured frequencies are the fundamentals, i.e., the energy differences between the zero and first vibrational levels. The calculated harmonic frequencies are equal to the fundamentals only for pure harmonic potentials. For a real anharmonic potential, the fundamental can be lower (this is often a case for stretching vibrations) or higher (as can happen for OPLA modes) than the harmonic frequencies. Morever, anharmonic terms can couple harmonic vibrational modes, which can strongly affect the observed intensities, e.g., some frequencies may not be observed due to anharmonicities.
-
-
-
-
105
-
-
0038683888
-
-
note
-
i.CCSD(T) × 100%.
-
-
-
-
106
-
-
0038345379
-
-
note
-
The SF-DFT IR intensities are not available because the analytic gradients for this method have not yet been implemented.
-
-
-
-
107
-
-
0038345380
-
-
note
-
-1.
-
-
-
|