-
1
-
-
33847599187
-
-
J. R. Thomas, B. J. DeLeeuw, G. Vacek, T. D. Crawford, Y. Yamaguchi, and H. F. Schaefer, J. Chem. Phys. 99, 403 (1993).
-
(1993)
J. Chem. Phys.
, vol.99
, pp. 403
-
-
Thomas, J.R.1
Deleeuw, B.J.2
Vacek, G.3
Crawford, T.D.4
Yamaguchi, Y.5
Schaefer, H.F.6
-
2
-
-
0001619261
-
-
T. Helgaker, J. Gauss, P. Jørgensen, and J. Olsen, J. Chem. Phys. 106, 6430 (1997).
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 6430
-
-
Helgaker, T.1
Gauss, J.2
Jørgensen, P.3
Olsen, J.4
-
4
-
-
0001925878
-
-
edited by K. B. Lipkowitz and D. B. Boyd (VCH, New York)
-
R. J. Bartlett and J. F. Stanton, in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd (VCH, New York, 1994), Vol. 5, pp. 65-169.
-
(1994)
Computational Chemistry
, vol.5
, pp. 65-169
-
-
Bartlett, R.J.1
Stanton, J.F.2
-
6
-
-
0002265510
-
-
K. Ruedenberg, M. Schmidt, M. Gilbert, and S. Elbert, Chem. Phys. 71, 41 (1982).
-
(1982)
Chem. Phys.
, vol.71
, pp. 41
-
-
Ruedenberg, K.1
Schmidt, M.2
Gilbert, M.3
Elbert, S.4
-
8
-
-
0001247830
-
-
A. I. Krylov, C. D. Sherrill, E. F. C. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 10669 (1998).
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 10669
-
-
Krylov, A.I.1
Sherrill, C.D.2
Byrd, E.F.C.3
Head-Gordon, M.4
-
14
-
-
77956755263
-
The configuration interaction method: Advances in highly correlated approaches
-
edited by P.-O. Löwdin (Academic, New York)
-
C. D. Sherrill and H. F. Schaefer, The Configuration Interaction Method: Advances in Highly Correlated Approaches, in Advances in Quantum Chemistry, Vol. 34, edited by P.-O. Löwdin (Academic, New York, 1999), pp. 143-269.
-
(1999)
Advances in Quantum Chemistry
, vol.34
, pp. 143-269
-
-
Sherrill, C.D.1
Schaefer, H.F.2
-
15
-
-
0005079653
-
-
J. Olsen, B. O. Roos, P. Jørgensen, and H. J. Aa. Jensen, J. Chem. Phys. 89, 2185 (1988).
-
(1988)
J. Chem. Phys.
, vol.89
, pp. 2185
-
-
Olsen, J.1
Roos, B.O.2
Jørgensen, P.3
Jensen, H.J.Aa.4
-
18
-
-
0037858361
-
-
note
-
2 molecule, respectively. However, in case of two identical fragments in a symmetric configuration, the lowest triplet state cannot be described by a single Slater determinant using symmetry-adapted orbitals. Therefore, it is necessary to use a symmetry-broken Hartree-Fock wave function to describe localization in the case of symmetrically arranged, noninteracting equivalent fragments.
-
-
-
-
19
-
-
0001212624
-
-
H. Koch, H. Jørgen Aa. Jensen, and P. Jørgensen, J. Chem. Phys. 93, 3345 (1990).
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 3345
-
-
Koch, H.1
Jørgen, H.2
Jensen, Aa.3
Jørgensen, P.4
-
20
-
-
0037858365
-
-
note
-
AB,AB block. The interpretation of these roots requires caution as described in footnote 22 of Ref. 17. For example, due to the truncated nature of the excitation operators, the EOM and CI models fail to describe situations when both fragments are excited with the same accuracy as the excitations on individual fragments. Due to similar considerations, Eq. (1) does note mean that for two noninteracting fragments, the total SF energy of the composite system equals the sum of total SF energy of individual fragments; rather, the total SF energy is equal to the sum of SF energy of fragment A and Hartree-Fock energy for the fragment B.
-
-
-
-
21
-
-
0000703066
-
-
J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 135
-
-
Foresman, J.B.1
Head-Gordon, M.2
Pople, J.A.3
Frisch, M.J.4
|