메뉴 건너뛰기




Volumn 18, Issue 1, 2003, Pages 1-17

Fitting a mixture distribution to a variable subject to heteroscedastic measurement errors

Author keywords

EM algorithm; Finite mixture distribution; Heteroscedastic measurement errors

Indexed keywords


EID: 0037596802     PISSN: 09434062     EISSN: None     Source Type: Journal    
DOI: 10.1007/s001800300129     Document Type: Article
Times cited : (4)

References (20)
  • 4
    • 0000489449 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a mixture of normal regressions: Starting values and singularities
    • Caudill, S.B. and Acharya, R.N. (1998). Maximum likelihood estimation of a mixture of normal regressions: starting values and singularities. Communications in Statistics, B - Simulation and Computation. 27, 667-674.
    • (1998) Communications in Statistics, B - Simulation and Computation , vol.27 , pp. 667-674
    • Caudill, S.B.1    Acharya, R.N.2
  • 6
    • 0028659217 scopus 로고
    • On the likelihood ratio test statistic for the number of components in a normal mixture with unequal variances
    • Feng, Z.D. and McCulloch, C.E. (1994). On the likelihood ratio test statistic for the number of components in a normal mixture with unequal variances. Biometrics. 50, 1158-1162.
    • (1994) Biometrics , vol.50 , pp. 1158-1162
    • Feng, Z.D.1    McCulloch, C.E.2
  • 7
    • 0001354471 scopus 로고
    • A constrained formulation of maximum-likelihood estimation for normal mixture distributions
    • Hathaway, R.J. (1985). A constrained formulation of maximum-likelihood estimation for normal mixture distributions. The Annals of Statistics. 13, 795-800.
    • (1985) The Annals of Statistics , vol.13 , pp. 795-800
    • Hathaway, R.J.1
  • 8
    • 84963176093 scopus 로고
    • On MLE of the parameters of a mixture of two normal distributions when the sample size is small
    • Hosmer Jr., D.W. (1973). On MLE of the parameters of a mixture of two normal distributions when the sample size is small. Communications in Statistics. 1, 217-227.
    • (1973) Communications in Statistics , vol.1 , pp. 217-227
    • Hosmer D.W., Jr.1
  • 9
    • 0000284439 scopus 로고
    • Consistency of the maximum-likelihood estimation in the presence of infinitely many incidental parameters
    • Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum-likelihood estimation in the presence of infinitely many incidental parameters. Annals of Mathematical Statistics. 27, 887-906.
    • (1956) Annals of Mathematical Statistics , vol.27 , pp. 887-906
    • Kiefer, J.1    Wolfowitz, J.2
  • 10
    • 0001213803 scopus 로고
    • Discrete parameter variation: Efficient estimation of a switching regression model
    • Kiefer, N.M. (1978). Discrete parameter variation: efficient estimation of a switching regression model. Econometrica. 46, 427-434.
    • (1978) Econometrica , vol.46 , pp. 427-434
    • Kiefer, N.M.1
  • 11
    • 1842331566 scopus 로고    scopus 로고
    • Segmented regression with errors in predictors: Semi-parametric and parametric methods
    • Küchenhoff, H. and Carroll, R. J. (1997). Segmented regression with errors in predictors: semi-parametric and parametric methods. Statistics in Medicine. 16, 169-188.
    • (1997) Statistics in Medicine , vol.16 , pp. 169-188
    • Küchenhoff, H.1    Carroll, R.J.2
  • 12
    • 0003527944 scopus 로고
    • Mixture models: Theory, geometry and applications
    • Institute of Mathematical Statistics, Hayward, California
    • Lindsay, B.G. (1995). Mixture Models: Theory, Geometry and Applications. NSF-CBMS Regional Conference Series in Probability and Statistics, Vol.5. Institute of Mathematical Statistics, Hayward, California.
    • (1995) NSF-CBMS Regional Conference Series in Probability and Statistics , vol.5
    • Lindsay, B.G.1
  • 13
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. B 44, 226-233.
    • (1982) Journal of the Royal Statistical Society , vol.B 44 , pp. 226-233
    • Louis, T.A.1
  • 15
    • 84907522262 scopus 로고
    • The errors-in-variables problem: Considerations provided by radiation dose-response analyses of the A-bomb survivor data
    • Pierce, D.A., Stram, D.O., Vaeth, M. und Schafer, D.W. (1992). The errors-in-variables problem: considerations provided by radiation dose-response analyses of the A-bomb survivor data. Journal of the American Statistical Association. 87, 351-359.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 351-359
    • Pierce, D.A.1    Stram, D.O.2    Vaeth, M.3    Schafer, D.W.4
  • 17
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • R.A. and Walker, H.F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review. 26, 195-240.
    • (1984) SIAM Review , vol.26 , pp. 195-240
    • Redner, R.A.1    Walker, H.F.2
  • 18
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • Richardson, S. and Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society. B 59, 731-792.
    • (1997) Journal of the Royal Statistical Society , vol.B 59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.