-
1
-
-
0008443796
-
Stationary motions and the incompressible limit for compressible viscous fluids
-
1 H. Beirao Da Veiga, Stationary motions and the incompressible limit for compressible viscous fluids, Houston J Math 13 (1987), 527–544.
-
(1987)
Houston J Math
, vol.13
, pp. 527-544
-
-
Beirao Da Veiga, H.1
-
2
-
-
1542576011
-
A finite element method for the compressible Stokes equations
-
2 R. B. Kellogg and B. Liu, A finite element method for the compressible Stokes equations, SIAM J Numer Anal 33 (1996), 780–788.
-
(1996)
SIAM J Numer Anal
, vol.33
, pp. 780-788
-
-
Kellogg, R.B.1
Liu, B.2
-
3
-
-
0042689864
-
A least‐squares finite element approximation for the compressible Stokes equations
-
3 Z. Cai and X. Ye, A least‐squares finite element approximation for the compressible Stokes equations, Numer Methods Partial Differential Equations 16 (2000), 62–70.
-
(2000)
Numer Methods Partial Differential Equations
, vol.16
, pp. 62-70
-
-
Cai, Z.1
Ye, X.2
-
4
-
-
0035499495
-
An analysis for the compressible Stokes equations by first‐order system of least‐squares finite element method
-
4 S. D. Kim and E. Lee, An analysis for the compressible Stokes equations by first‐order system of least‐squares finite element method, Numer Methods Partial Differential Eq 17 (2001), 689–699.
-
(2001)
Numer Methods Partial Differential Eq
, vol.17
, pp. 689-699
-
-
Kim, S.D.1
Lee, E.2
-
5
-
-
0034411077
-
An optimal order convergence for a weak formulation of the compressible Stokes system with inflow boundary condition
-
5 J. R. Kweon, An optimal order convergence for a weak formulation of the compressible Stokes system with inflow boundary condition, Numer Math 86 (2000), 305–318.
-
(2000)
Numer Math
, vol.86
, pp. 305-318
-
-
Kweon, J.R.1
-
6
-
-
0001229827
-
On Newton‐Krylov‐multigrid methods for the incompressible Navier‐Stokes equations
-
6 D. A. Knoll and V. A. Mousseau, On Newton‐Krylov‐multigrid methods for the incompressible Navier‐Stokes equations, J Comput Phys 163 (2000), 262–267.
-
(2000)
J Comput Phys
, vol.163
, pp. 262-267
-
-
Knoll, D.A.1
Mousseau, V.A.2
-
7
-
-
0033293109
-
A multigrid preconditioned Newton‐Krylov Method
-
7 D. A. Knoll and W. Rider, A multigrid preconditioned Newton‐Krylov Method, SIAM J Sci Comput 21 (2) (1999), 691–702.
-
(1999)
SIAM J Sci Comput
, vol.21
, Issue.2
, pp. 691-702
-
-
Knoll, D.A.1
Rider, W.2
-
8
-
-
0036229223
-
A multigrid‐preconditioned Newton‐Krylov Method for the incompressible Navier‐Stokes Equations
-
8 M. Pernice and M. D. Tocci, A multigrid‐preconditioned Newton‐Krylov Method for the incompressible Navier‐Stokes Equations, SIAM J Sci Comput 23 (2) (2001), 398–418.
-
(2001)
SIAM J Sci Comput
, vol.23
, Issue.2
, pp. 398-418
-
-
Pernice, M.1
Tocci, M.D.2
-
9
-
-
84871339177
-
Private communication
-
9 T. A. Manteuffel, Private communication.
-
-
-
Manteuffel, T.A.1
-
10
-
-
0003507785
-
Finite element methods for Navier‐Stokes equations: theory and algorithms
-
10 V. Girault and P. A. Raviart, Finite element methods for Navier‐Stokes equations: theory and algorithms, Springer‐Verlag, New York, 1986.
-
(1986)
-
-
Girault, V.1
Raviart, P.A.2
-
11
-
-
0000347589
-
Optimal finite‐element interpolation on curved domains
-
11 C. Bernardi, Optimal finite‐element interpolation on curved domains, SIAM J Numer Anal 26 (1989), 1212–1240.
-
(1989)
SIAM J Numer Anal
, vol.26
, pp. 1212-1240
-
-
Bernardi, C.1
-
12
-
-
0003560721
-
Finite element method for elliptic problems
-
12 P. G. Ciarlet, Finite element method for elliptic problems, Elsevier Science, New York, 1980.
-
(1980)
-
-
Ciarlet, P.G.1
-
13
-
-
0022734898
-
Optimal isoparametric finite elements and error estimates for domains involving curved boundaries
-
13 M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, SIAM J Numer Anal 23 (1986), 562–580.
-
(1986)
SIAM J Numer Anal
, vol.23
, pp. 562-580
-
-
Lenoir, M.1
-
14
-
-
0001408249
-
Analysis of velocity‐flux least‐squares principles for the Navier‐Stokes equations. Part I
-
14 P. B. Bochev, Z. Cai, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity‐flux least‐squares principles for the Navier‐Stokes equations. Part I, SIAM J Numer Anal 35 (1998), 990–1009.
-
(1998)
SIAM J Numer Anal
, vol.35
, pp. 990-1009
-
-
Bochev, P.B.1
Cai, Z.2
Manteuffel, T.A.3
McCormick, S.F.4
|