-
1
-
-
0033334001
-
A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and Local Boundary Integral Equation (LBIE) methods
-
Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and Local Boundary Integral Equation (LBIE) methods. Comput. Mech. 24: 348-372
-
(1999)
Comput. Mech.
, vol.24
, pp. 348-372
-
-
Atluri, S.N.1
Kim, H.G.2
Cho, J.Y.3
-
2
-
-
0032136132
-
A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics
-
Atluri SN, Zhu T (1998) A new meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22: 117-127
-
(1998)
Comput. Mech.
, vol.22
, pp. 117-127
-
-
Atluri, S.N.1
Zhu, T.2
-
5
-
-
0020752609
-
Natural convection of air in a square cavity: A benchmark numerical solution
-
de Vahl Davis G (1983) Natural convection of air in a square cavity: a benchmark numerical solution. Int. J. Numer. Meth. Fluids 3: 249-264
-
(1983)
Int. J. Numer. Meth. Fluids
, vol.3
, pp. 249-264
-
-
De Vahl, D.G.1
-
7
-
-
0001018295
-
Multiquadric equations of topography and other irregular surfaces
-
Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J. Geophysics Res. 176: 1905-1915
-
(1971)
J. Geophysics Res.
, vol.176
, pp. 1905-1915
-
-
Hardy, R.L.1
-
8
-
-
0025229330
-
Multiquadrics - A scattered data approximation scheme with applications to computational fluid dynamics: Surface approximations and partial derivative estimates
-
Kansa ET (1990a) Multiquadrics - A scattered data approximation scheme with applications to computational fluid dynamics: Surface approximations and partial derivative estimates. Comput. Math. Appl. 19(6-8): 127-145
-
(1990)
Comput. Math. Appl.
, vol.19
, Issue.6-8
, pp. 127-145
-
-
Kansa, E.T.1
-
9
-
-
0025210711
-
Multiquadrics - A scattered data approximation scheme with applications to computational fluid dynamics: Solutions to parabolic, hyperbolic, and elliptic partial differential equations
-
Kansa ET (1990b) Multiquadrics - A scattered data approximation scheme with applications to computational fluid dynamics: Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. Math. Appl. 19(6-9): 147-161
-
(1990)
Comput. Math. Appl.
, vol.19
, Issue.6-9
, pp. 147-161
-
-
Kansa, E.T.1
-
10
-
-
0035817769
-
A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids
-
Liu GR, Gu YT (2001) A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. J. Soun. Vibrat. 246(1): 29-46
-
(2001)
J. Soun. Vibrat.
, vol.246
, Issue.1
, pp. 29-46
-
-
Liu, G.R.1
Gu, Y.T.2
-
11
-
-
0036915246
-
Point interpolation method based on local residual formulation using radial basis functions
-
Liu GR, Yan L, Wang JG, Gu YT (2002) Point interpolation method based on local residual formulation using radial basis functions. Struct. Eng. Mech. 14(6): 713-732
-
(2002)
Struct. Eng. Mech.
, vol.14
, Issue.6
, pp. 713-732
-
-
Liu, G.R.1
Yan, L.2
Wang, J.G.3
Gu, Y.T.4
-
12
-
-
0037873180
-
The partition of unity finite element method: Basic theory and applications
-
TICAM Report 96-01, University of Texas, Austin
-
Melenk JM, Babuska I (1996) The Partition of Unity Finite Element Method: Basic Theory and Applications. TICAM Report 96-01, University of Texas, Austin
-
(1996)
-
-
Melenk, J.M.1
Babuska, I.2
-
13
-
-
0027035536
-
Generalizing the finite element method: Diffuse approximation and diffuse elements
-
Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mechan. 10: 307-318
-
(1992)
Comput. Mechan.
, vol.10
, pp. 307-318
-
-
Nayroles, B.1
Touzot, G.2
Villon, P.3
-
14
-
-
0001739142
-
The theory of radial basis functions in 1990
-
In: Light W (ed); Oxford University Press, Oxford
-
Powell MJD (1992) The theory of radial basis functions in 1990. In: Light W (ed) Advances in Numerical Analysis II: Wavelets, Subdivision, and Radial Basis Functions, Oxford University Press, Oxford, pp. 105-210
-
(1992)
Advances in Numerical Analysis II: Wavelets, Subdivision, and Radial Basis Functions
, pp. 105-210
-
-
Powell, M.J.D.1
-
15
-
-
0033177867
-
Application of differential quadrature method to simulate natural convection in a concentric annulus
-
Shu C (1999) Application of differential quadrature method to simulate natural convection in a concentric annulus. Int. J. Numer. Meth. Fluids 30: 977-993
-
(1999)
Int. J. Numer. Meth. Fluids
, vol.30
, pp. 977-993
-
-
Shu, C.1
|