-
1
-
-
0004164398
-
-
Springer-Verlag, Berlin, Heidelberg, New York
-
J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View, 2nd ed. (Springer-Verlag, Berlin, Heidelberg, New York, 1981).
-
(1981)
Quantum Physics: A Functional Integral Point of View, 2nd Ed.
-
-
Glimm, J.1
Jaffe, A.2
-
5
-
-
0003734685
-
-
Kluwer, Dordrecht
-
N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Kluwer, Dordrecht, 1990).
-
(1990)
General Principles of Quantum Field Theory
-
-
Bogoliubov, N.N.1
Logunov, A.A.2
Oksak, A.I.3
Todorov, I.T.4
-
8
-
-
0038109062
-
-
To avoid inessential technical complications, we consider the case of a single scalar field in d-dimensional space-time (d≥2)
-
To avoid inessential technical complications, we consider the case of a single scalar field in d-dimensional space-time (d≥2).
-
-
-
-
14
-
-
0038785966
-
-
Here and subsequently, we denote the continuous dual of a topological vector space by the same symbol with a prime
-
Here and subsequently, we denote the continuous dual of a topological vector space by the same symbol with a prime.
-
-
-
-
16
-
-
0038785964
-
-
k; the projection of U is meant to be open in the topology of the sphere
-
k; the projection of U is meant to be open in the topology of the sphere.
-
-
-
-
18
-
-
0038785963
-
-
A cone U is said to be compact in a cone V (notation U double subset sign V) if Ū\{0}⊂ V
-
A cone U is said to be compact in a cone V (notation U double subset sign V) if Ū\{0}⊂ V.
-
-
-
-
19
-
-
0003944687
-
-
Springer-Verlag, Berlin, Heidelberg, New York
-
H. Schaefer, Topological Vector Spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1981).
-
(1981)
Topological Vector Spaces
-
-
Schaefer, H.1
-
20
-
-
0003961310
-
-
Academic, New York, London
-
F. Treves, Topological Vector Spaces, Distributions, and Kernels (Academic, New York, London, 1967).
-
(1967)
Topological Vector Spaces, Distributions, and Kernels
-
-
Treves, F.1
-
21
-
-
0038785965
-
-
α
-
α.
-
-
-
-
22
-
-
0038109061
-
-
dn.
-
dn.
-
-
-
-
24
-
-
0037771533
-
Wick power series in indefinite metric field theories
-
Proceedings of the International Conference dedicated to the memory of Professor Efim Fradkin, Moscow, Russia, June 5-10 (Scientific World, Moscow)
-
A. G. Smirnov and M. A. Soloviev, "Wick power series in indefinite metric field theories," Quantization, Gauge Theory, and Strings (Proceedings of the International Conference dedicated to the memory of Professor Efim Fradkin, Moscow, Russia, June 5-10, 2000), Vol. 2, pp. 107-116 (Scientific World, Moscow, 2001).
-
(2000)
Quantization, Gauge Theory, and Strings
, vol.2
, pp. 107-116
-
-
Smirnov, A.G.1
Soloviev, M.A.2
-
30
-
-
0038448338
-
-
S. Nagamachi and N. Mugibayashi, Commun. Math. Phys. 46, 119 (1976); 49, 257 (1976).
-
(1976)
Commun. Math. Phys.
, vol.49
, pp. 257
-
-
|