-
1
-
-
0039035832
-
Schur-like forms for matrix Lie groups, Lie algebras and Jordan algebras
-
G. Ammar, C. Mehl, and V. Mehrmann. Schur-like forms for matrix Lie groups, Lie algebras and Jordan algebras. Linear Algebra Appl., 287:11-39 (1999).
-
(1999)
Linear Algebra Appl.
, vol.287
, pp. 11-39
-
-
Ammar, G.1
Mehl, C.2
Mehrmann, V.3
-
2
-
-
0031272504
-
A new method for computing the stable invariant subspace of a real Hamiltonian matrix
-
P. Benner, V. Mehrmann, and H. Xu. A new method for computing the stable invariant subspace of a real Hamiltonian matrix. J. Comput. Appl. Math., 86:17-43 (1997).
-
(1997)
J. Comput. Appl. Math.
, vol.86
, pp. 17-43
-
-
Benner, P.1
Mehrmann, V.2
Xu, H.3
-
3
-
-
0032344706
-
A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils
-
P. Benner, V. Mehrmann, and H. Xu. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math., 78:329-358 (1998).
-
(1998)
Numer. Math.
, vol.78
, pp. 329-358
-
-
Benner, P.1
Mehrmann, V.2
Xu, H.3
-
4
-
-
0001423566
-
An analysis of the HR algorithm for computing the eigenvalues of a matrix
-
A. Bunse-Gerstner. An analysis of the HR algorithm for computing the eigenvalues of a matrix. Linear Algebra Appl., 35:155-173 (1981).
-
(1981)
Linear Algebra Appl.
, vol.35
, pp. 155-173
-
-
Bunse-Gerstner, A.1
-
5
-
-
36749118959
-
Normal forms of elements of classical real and complex Lie and Jordan algebras
-
D.Ž. Djoković, J. Patera, P. Winternitz, and H. Zassenhaus. Normal forms of elements of classical real and complex Lie and Jordan algebras. J. Math. Phys., 24:1363-1373 (1983).
-
(1983)
J. Math. Phys.
, vol.24
, pp. 1363-1373
-
-
Djoković, D.Ž.1
Patera, J.2
Winternitz, P.3
Zassenhaus, H.4
-
6
-
-
0009445440
-
Canonical form of symplectic matrix pencils
-
A. Ferrante and B.C. Levy. Canonical form of symplectic matrix pencils. Linear Algebra Appl., 274:259-300 (1998).
-
(1998)
Linear Algebra Appl.
, vol.274
, pp. 259-300
-
-
Ferrante, A.1
Levy, B.C.2
-
8
-
-
85045783587
-
Jordan Canonical Forms for Hamiltonian and Symplectic Matrices and Pencils
-
To appear
-
W.W. Lin, V. Mehrmann, and H. Xu. Jordan Canonical Forms for Hamiltonian and Symplectic Matrices and Pencils. To appear in Linear Algebra Appl..
-
Linear Algebra Appl.
-
-
Lin, W.W.1
Mehrmann, V.2
Xu, H.3
-
9
-
-
85086807963
-
Condensed forms for skew-Hamiltonian/Hamiltonian pencils
-
To appear
-
C. Mehl. Condensed forms for skew-Hamiltonian/Hamiltonian pencils. To appear in SIAM J. Matrix Anal. Appl..
-
SIAM J. Matrix Anal. Appl.
-
-
Mehl, C.1
-
10
-
-
0004086442
-
-
PhD Thesis, Fak. f. Mathematik, TU Chemnitz, D-09107 Chemnitz, FRG
-
C. Mehl. Compatible Lie and Jordan Algebras and Applications to Structured Matrices and Pencils. PhD Thesis, Fak. f. Mathematik, TU Chemnitz, D-09107 Chemnitz, FRG, 1998.
-
(1998)
Compatible Lie and Jordan Algebras and Applications to Structured Matrices and Pencils.
-
-
Mehl, C.1
-
11
-
-
36749119514
-
Versal deformations of elements of classical Jordan algebras
-
J. Patera and C. Rousseau. Versal deformations of elements of classical Jordan algebras. J. Math. Phys., 24:1375-1379 (1983).
-
(1983)
J. Math. Phys.
, vol.24
, pp. 1375-1379
-
-
Patera, J.1
Rousseau, C.2
-
12
-
-
0001750429
-
The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil
-
B.P. Thompson. The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil. Linear Algebra Appl., 14:136-177 (1976).
-
(1976)
Linear Algebra Appl.
, vol.14
, pp. 136-177
-
-
Thompson, B.P.1
-
13
-
-
0001625882
-
Pencils of complex and real symmetric and skew matrices
-
B.P. Thompson. Pencils of complex and real symmetric and skew matrices. Linear Algebra Appl., 147:323-371 (1991).
-
(1991)
Linear Algebra Appl.
, vol.147
, pp. 323-371
-
-
Thompson, B.P.1
-
14
-
-
0037575462
-
A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil
-
F. Uhlig. A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil. Linear Algebra Appl., 14:189-209 (1976).
-
(1976)
Linear Algebra Appl.
, vol.14
, pp. 189-209
-
-
Uhlig, F.1
|