메뉴 건너뛰기




Volumn 2, Issue , 2003, Pages 1068-1073

Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS)

Author keywords

Adaptive neuro fuzzy inference system (ANFIS); Artificial neural network (ANN); Battery; State of charge (SOC)

Indexed keywords

BACKPROPAGATION; CORRELATION METHODS; FEEDFORWARD NEURAL NETWORKS; FUZZY SETS; INFERENCE ENGINES; LARGE SCALE SYSTEMS;

EID: 0037523276     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (102)

References (16)
  • 1
    • 4243785501 scopus 로고    scopus 로고
    • State-of-charge - What do we really speak about?
    • D.U. Sauer, G. Bopp, A. Jossen, et al., State-of-charge - what do we really speak about? INTELEC, 1999.
    • (1999) INTELEC
    • Sauer, D.U.1    Bopp, G.2    Jossen, A.3
  • 2
    • 0035366046 scopus 로고    scopus 로고
    • Methods for state-of-charge determination and their application
    • S. Piller, Marion Perrin, A. Jossen. Methods for state-of-charge determination and their application. Journal of Power Sources, 96(2001) 113-120.
    • (2001) Journal of Power Sources , vol.96 , pp. 113-120
    • Piller, S.1    Perrin, M.2    Jossen, A.3
  • 5
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference systems
    • May
    • J.-S. Roger Jang. ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Trans. on Systems, Man, and Cybernetics, 23(03): 665-685, May 1993.
    • (1993) IEEE Trans. on Systems, Man, and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Roger Jang, J.-S.1
  • 6
    • 0036610663 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles
    • June
    • W.X. Shen, C.C. Chan, E.W.C. Lo, K.T. Chau. Adaptive Neuro-Fuzzy Modeling of Battery Residual Capacity for Electric Vehicles. IEEE Trans. on Industrial Electronics, 49(3): 677-684, June, 2002.
    • (2002) IEEE Trans. on Industrial Electronics , vol.49 , Issue.3 , pp. 677-684
    • Shen, W.X.1    Chan, C.C.2    Lo, E.W.C.3    Chau, K.T.4
  • 8
    • 0032597551 scopus 로고    scopus 로고
    • Input feature selection for real-time transient stability assessment for artificial neural network (ANN) using ANN sensitivity analysis
    • A.G. Bahbah, A.A. Girgis, Input feature selection for real-time transient stability assessment for artificial neural network (ANN) using ANN sensitivity analysis, IEEE International Conference on Power Industry Computer Applications, pp. 295-300, 1999.
    • (1999) IEEE International Conference on Power Industry Computer Applications , pp. 295-300
    • Bahbah, A.G.1    Girgis, A.A.2
  • 9
    • 0012229617 scopus 로고
    • Genetic algorithm based input selection for a neural network function approximator with applications to SSME health monitoring
    • C.C. Peck, A.P. Dhawan, C.M. Meyer, Genetic algorithm based input selection for a neural network function approximator with applications to SSME health monitoring, IEEE International Conference on Neural Networks, vol.2, pp.1115 -1122, 1993.
    • (1993) IEEE International Conference on Neural Networks , vol.2 , pp. 1115-1122
    • Peck, C.C.1    Dhawan, A.P.2    Meyer, C.M.3
  • 11
    • 0032204310 scopus 로고    scopus 로고
    • Input variable selection for ANN-based short-term load forecasting
    • Nov.
    • I. Drezga, S. Rahman. Input variable selection for ANN-based short-term load forecasting. IEEE Trans. on Power System, 13(4), pp. 1238-1244, Nov. 1998.
    • (1998) IEEE Trans. on Power System , vol.13 , Issue.4 , pp. 1238-1244
    • Drezga, I.1    Rahman, S.2
  • 13
    • 0036931056 scopus 로고    scopus 로고
    • Artificial neural network in estimation of battery state-of-charge (SOC) with nonconventional input variables selected by correlation analysis
    • Beijing, Nov. 4-5
    • C.H. Cai, D. Du, et al. Artificial neural network in estimation of battery state-of-charge (SOC) with nonconventional input variables selected by correlation analysis. The First IEEE International Conference on Machine Learning and Cybernetics 2002 (ICMLC'02), Beijing, pp. 1619-1625, Nov. 4-5 2002.
    • (2002) The First IEEE International Conference on Machine Learning and Cybernetics 2002 (ICMLC'02) , pp. 1619-1625
    • Cai, C.H.1    Du, D.2
  • 14
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on Systems, Man, and Cybernetics, 15:116-132, 1985.
    • (1985) IEEE Trans. on Systems, Man, and Cybernetics , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 15
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • M. Sugeno and G. T.Kang, Structure identification of fuzzy model. Fuzzy Sets and Systems, 28:15-33, 1988.
    • (1988) Fuzzy Sets and Systems , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 16
    • 84964435075 scopus 로고    scopus 로고
    • State-of-charge (SOC) estimation of high power Ni-MH rechargeable battery with artificial neural network
    • Singapore, Nov. 18-22
    • C.H. Cai, D. Du, et al. State-of-charge (SOC) estimation of high power Ni-MH rechargeable battery with artificial neural network. 9th International Conference on Neural Information Processing (ICONIP'02), Singapore, Vol.2, pp.824-828, Nov. 18-22, 2002.
    • (2002) 9th International Conference on Neural Information Processing (ICONIP'02) , vol.2 , pp. 824-828
    • Cai, C.H.1    Du, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.