-
1
-
-
0038567853
-
Permutations with one forbidden subsequence of increasing length
-
Vienna
-
E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani, Permutations with one forbidden subsequence of increasing length, in: Proc. of the 9th FPSAC, Vienna, 1997, pp. 49-60.
-
(1997)
Proc. of the 9th FPSAC
, pp. 49-60
-
-
Barcucci, E.1
Del Lungo, A.2
Pergola, E.3
Pinzani, R.4
-
3
-
-
0002540288
-
Permutations avoiding an increasing number of length-increasing forbidden subsequences
-
E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani, Permutations avoiding an increasing number of length-increasing forbidden subsequences, Discrete Math. Theoret. Comput. Sci. 4 (2000) 31-44.
-
(2000)
Discrete Math. Theoret. Comput. Sci.
, vol.4
, pp. 31-44
-
-
Barcucci, E.1
Del Lungo, A.2
Pergola, E.3
Pinzani, R.4
-
4
-
-
0000150371
-
Exact enumeration of 1342-avoiding permutation: A close link with labelled trees and planar maps
-
M. Bóna, Exact enumeration of 1342-avoiding permutation: A close link with labelled trees and planar maps, J. Combin. Theory Ser. A 80 (1997) 257-272.
-
(1997)
J. Combin. Theory Ser. A
, vol.80
, pp. 257-272
-
-
Bóna, M.1
-
5
-
-
0000437048
-
The number of permutations with exactly r 132-subsequences is P-recursive in the size!
-
M. Bóna, The number of permutations with exactly r 132-subsequences is P-recursive in the size!, Adv. in Appl. Math. 18 (1997) 510-522.
-
(1997)
Adv. in Appl. Math.
, vol.18
, pp. 510-522
-
-
Bóna, M.1
-
6
-
-
0002921232
-
Permutations avoiding certain patterns: The case of length 4 and some generalizations
-
M. Bóna, Permutations avoiding certain patterns: The case of length 4 and some generalizations, Discrete Math. 175 (1997) 55-67.
-
(1997)
Discrete Math.
, vol.175
, pp. 55-67
-
-
Bóna, M.1
-
7
-
-
0000666279
-
Permutations with one or two 132-subsequences
-
M. Bóna, Permutations with one or two 132-subsequences, Discrete Math. 181 (1998) 267-274.
-
(1998)
Discrete Math.
, vol.181
, pp. 267-274
-
-
Bóna, M.1
-
8
-
-
3042521835
-
Restricted. permutations related to Fibonacci numbers and k-generalized Fibonacci numbers
-
Preprint, math.CO/0109219v1
-
E.S. Egge, Restricted permutations related to Fibonacci numbers and k-generalized Fibonacci numbers, Preprint, math.CO/0109219v1, 2001.
-
(2001)
-
-
Egge, E.S.1
-
9
-
-
0035413460
-
Permutations with restricted patterns and Dyck paths
-
C. Krattenthaler, Permutations with restricted patterns and Dyck paths, Adv. in Appl. Math. 27 (2001) 510-530.
-
(2001)
Adv. in Appl. Math.
, vol.27
, pp. 510-530
-
-
Krattenthaler, C.1
-
10
-
-
85031163709
-
-
Private communication
-
T. Mansour, Private communication, 2001.
-
(2001)
-
-
Mansour, T.1
-
11
-
-
85031171315
-
Counting occurrences of 132 in a permutation
-
Preprint, math.CO/0107073v2 in print
-
T. Mansour, A. Vainshtein, Counting occurrences of 132 in a permutation, Preprint, math.CO/0107073v2, Adv. in Appl. Math., in print.
-
Adv. in Appl. Math.
-
-
Mansour, T.1
Vainshtein, A.2
-
12
-
-
85031171770
-
Layered restrictions and Chebyshev polynomials
-
in print
-
T. Mansour, A. Vainshtein, Layered restrictions and Chebyshev polynomials, Ann. Combin., in print.
-
Ann. Combin.
-
-
Mansour, T.1
Vainshtein, A.2
-
13
-
-
0003134489
-
Restricted permutations, continued fractions and Chebyshev polynomials
-
T. Mansour, A. Vainshtein, Restricted permutations, continued fractions and Chebyshev polynomials, Electron. J. Combin. 7 (2000) R17.
-
(2000)
Electron. J. Combin.
, vol.7
-
-
Mansour, T.1
Vainshtein, A.2
-
14
-
-
0037891640
-
Restricted (132)-avoiding permutations
-
T. Mansour, A. Vainshtein, Restricted (132)-avoiding permutations, Adv. in Appl. Math. 26 (2001) 258-269.
-
(2001)
Adv. in Appl. Math.
, vol.26
, pp. 258-269
-
-
Mansour, T.1
Vainshtein, A.2
-
15
-
-
0041907053
-
Restricted permutations and Chebyshev polynomials
-
T. Mansour, A. Vainshtein, Restricted permutations and Chebyshev polynomials, Sém. Lothar. Combin. 47 (2001) 17.
-
(2001)
Sém. Lothar. Combin.
, vol.47
, pp. 17
-
-
Mansour, T.1
Vainshtein, A.2
-
16
-
-
0001363286
-
The number of permutations containing exactly one increasing subsequence of length 3
-
J. Noonan, The number of permutations containing exactly one increasing subsequence of length 3, Discrete Math. 152 (1996) 307-313.
-
(1996)
Discrete Math.
, vol.152
, pp. 307-313
-
-
Noonan, J.1
-
17
-
-
0030527058
-
The enumeration of permutations with a prescribed number of "forbidden" patterns
-
J. Noonan, D. Zeilberger, The enumeration of permutations with a prescribed number of "forbidden" patterns, Adv. in Appl. Math. 17 (1996) 381-404.
-
(1996)
Adv. in Appl. Math.
, vol.17
, pp. 381-404
-
-
Noonan, J.1
Zeilberger, D.2
-
18
-
-
0035413461
-
Permutations restricted by two distinct patterns of length three
-
A. Robertson, Permutations restricted by two distinct patterns of length three, Adv. in Appl. Math. 27 (2001) 548-561.
-
(2001)
Adv. in Appl. Math.
, vol.27
, pp. 548-561
-
-
Robertson, A.1
-
22
-
-
0003279650
-
Enumerative Combinatorics 2
-
Cambridge Univ. Press, Cambridge
-
R.P. Stanley, Enumerative Combinatorics 2, in: Cambridge Stud. Adv. Math., Vol. 62, Cambridge Univ. Press, Cambridge, 1999.
-
(1999)
Cambridge Stud. Adv. Math.
, vol.62
-
-
Stanley, R.P.1
-
23
-
-
0003447011
-
Permutations with forbidden subsequences; and, stack sortable permutations
-
PhD thesis, Massachusetts Institute of Technology
-
J. West, Permutations with forbidden subsequences; and, stack sortable permutations, PhD thesis, Massachusetts Institute of Technology, 1990.
-
(1990)
-
-
West, J.1
|