메뉴 건너뛰기




Volumn 52, Issue 4, 2002, Pages

Besicovitch subsets of self-similar sets

Author keywords

Bescovitch set; Gauge functions; Perturbation measures

Indexed keywords


EID: 0037492141     PISSN: 03730956     EISSN: None     Source Type: Journal    
DOI: 10.5802/aif.1911     Document Type: Article
Times cited : (10)

References (8)
  • 1
    • 0000728518 scopus 로고
    • On the sum of digits of real numbers represented in the dyadic system
    • A.S. BESICOVITCH, On the sum of digits of real numbers represented in the dyadic system, Math. Ann., 110 (1934), 321-330.
    • (1934) Math. Ann. , vol.110 , pp. 321-330
    • Besicovitch, A.S.1
  • 2
    • 0002672692 scopus 로고
    • The fractional dimension of a set defined by decimal properties
    • H.G. EGGLESTON, The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford Ser., 20 (1949), 31-36.
    • (1949) Quart. J. Math. Oxford Ser. , vol.20 , pp. 31-36
    • Eggleston, H.G.1
  • 4
    • 0038688310 scopus 로고
    • A further example on scales of Hausdorff functions
    • R. KAUFMAN, A further example on scales of Hausdorff functions, J. London Math. Soc., 8-2 (1974), 585-586.
    • (1974) J. London Math. Soc. , vol.8 , Issue.2 , pp. 585-586
    • Kaufman, R.1
  • 5
    • 22044442365 scopus 로고    scopus 로고
    • Singularity of self-similar measures with respect to Hausdorff measures
    • M. MORAN and J. REY, Singularity of self-similar measures with respect to Hausdorff measures, Trans. of Amer. Math. Soc., 350-6 (1998), 2297-2310.
    • (1998) Trans. of Amer. Math. Soc. , vol.350 , Issue.6 , pp. 2297-2310
    • Moran, M.1    Rey, J.2
  • 6
    • 84974408730 scopus 로고
    • The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure
    • Y. PERES, The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure, Math. Proc. Camb. Phil. Soc., 116 (1994), 513-526.
    • (1994) Math. Proc. Camb. Phil. Soc. , vol.116 , pp. 513-526
    • Peres, Y.1
  • 8
    • 84974022175 scopus 로고
    • The measure theory of random fractals
    • J. TAYLOR, The measure theory of random fractals, Math. Proc. Cambridge Philo. Soc., 100 (1986), 383-408.
    • (1986) Math. Proc. Cambridge Philo. Soc. , vol.100 , pp. 383-408
    • Taylor, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.