메뉴 건너뛰기




Volumn 40, Issue 23, 2001, Pages 3843-3849

Cascaded linear shift–invariant processors in optical pattern recognition

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BACKPROPAGATION; FEEDFORWARD NEURAL NETWORKS; MULTILAYERS; NONLINEAR OPTICS; OPTICAL CORRELATION; OPTICAL FILTERS; OPTIMIZATION; SIMULATED ANNEALING;

EID: 0037485647     PISSN: 1559128X     EISSN: 21553165     Source Type: Journal    
DOI: 10.1364/AO.40.003843     Document Type: Article
Times cited : (2)

References (29)
  • 1
    • 0029568042 scopus 로고
    • Classifier and shift-invariant automatic target recognition
    • D. Casasent and L. M. Nieberg, “Classifier and shift-invariant automatic target recognition,” Neural Networks 8, 1117-1129 (1995).
    • (1995) Neural Networks , vol.8 , pp. 1117-1129
    • Casasent, D.1    Nieberg, L.M.2
  • 2
    • 0023363097 scopus 로고
    • Phase-only composite filter
    • X.-Y. Su, G.-S. Zhang, and L.-R. Guo, “Phase-only composite filter,” Opt. Eng. 26, 520-523 (1987).
    • (1987) Opt. Eng. , vol.26 , pp. 520-523
    • Su, X.-Y.1    Zhang, G.-S.2    Guo, L.-R.3
  • 3
  • 5
    • 0023513717 scopus 로고
    • Learning, invariance, and generalization in high-order neural networks
    • C. L. Giles and T. Maxwell, “Learning, invariance, and generalization in high-order neural networks,” Appl. Opt. 26, 4972-4978 (1987).
    • (1987) Appl. Opt , vol.26 , pp. 4972-4978
    • Giles, C.L.1    Maxwell, T.2
  • 6
    • 0026835689 scopus 로고
    • Translation, rotation and scale invariant pattern recognition by high-order neural networks and moment classifiers
    • S. J. Perantonis and P. J. G. Lisboa, “Translation, rotation and scale invariant pattern recognition by high-order neural networks and moment classifiers,” IEEE Trans. Neural Networks 3, 241-251 (1992).
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 241-251
    • Perantonis, S.J.1    Lisboa, P.J.G.2
  • 7
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate Bayesian a posteriori probabilities,” Neural Comput. 3, 461-483 (1991).
    • (1991) Neural Comput , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 8
    • 0026191131 scopus 로고
    • Bayes statistical behavior and valid generalization of pattern classifying neural networks
    • F. Kanaya and S. Miyake, “Bayes statistical behavior and valid generalization of pattern classifying neural networks,” IEEE Trans. Neural Networks 2, 471-475 (1991).
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 471-475
    • Kanaya, F.1    Miyake, S.2
  • 9
    • 84975562795 scopus 로고
    • Massive holographic interconnection networks and their limitations
    • J. Shamir, H. J. Caulfield, and R. B. Johnson, “Massive holographic interconnection networks and their limitations,” Appl. Opt. 28, 311-324 (1989).
    • (1989) Appl. Opt. , vol.28 , pp. 311-324
    • Shamir, J.1    Caulfield, H.J.2    Johnson, R.B.3
  • 10
    • 0029378441 scopus 로고
    • Optical dual-scale architecture for neural image recognition
    • M. A. Neifeld, “Optical dual-scale architecture for neural image recognition,” Appl. Opt. 34, 5920-5927 (1995).
    • (1995) Appl. Opt. , vol.34 , pp. 5920-5927
    • Neifeld, M.A.1
  • 11
    • 0021423827 scopus 로고
    • Unified synthetic discriminant function computation formulation
    • D. Casasent, “Unified synthetic discriminant function computation formulation,” Appl. Opt. 23, 1620-1627 (1984).
    • (1984) Appl. Opt. , vol.23 , pp. 1620-1627
    • Casasent, D.1
  • 12
    • 0001473243 scopus 로고
    • Improved discrimination in optical character recognition
    • H. J. Caulfield and W. T. Maloney, “Improved discrimination in optical character recognition,” Appl. Opt. 8, 2354-2356 (1969).
    • (1969) Appl. Opt. , vol.8 , pp. 2354-2356
    • Caulfield, H.J.1    Maloney, W.T.2
  • 13
    • 84975551839 scopus 로고
    • Minimum variance synthetic discriminant functions
    • B. V. K. Vijaya Kumar, “Minimum variance synthetic discriminant functions,” J. Opt. Soc. Am. A 3, 1579-1584 (1986).
    • (1986) J. Opt. Soc. Am. A , vol.3 , pp. 1579-1584
    • Vijaya Kumar, B.V.K.1
  • 14
    • 84975647262 scopus 로고
    • Nonlinear joint power spectrum based optical correlation
    • B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358-2367 (1989).
    • (1989) Appl. Opt. , vol.28 , pp. 2358-2367
    • Javidi, B.1
  • 15
    • 0016758101 scopus 로고
    • Cognitron: A self-organizing multilayered neural network model
    • K. Fukushima, “Cognitron: a self-organizing multilayered neural network model,” Biol. Cybern. 20, 121-136 (1975).
    • (1975) Biol. Cybern. , vol.20 , pp. 121-136
    • Fukushima, K.1
  • 16
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing multilayered neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima, “Neocognitron: a self-organizing multilayered neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biol. Cybern. 36, 193-202 (1980).
    • (1980) Biol. Cybern , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 17
    • 0030270445 scopus 로고    scopus 로고
    • Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images
    • B. Sahiner, H.-P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler, and M. M. Goodsitt, “Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images,” IEEE. Trans. Med. Imaging 15, 598-610 (1996).
    • (1996) IEEE. Trans. Med. Imaging , vol.15 , pp. 598-610
    • Sahiner, B.1    Chan, H.-P.2    Petrick, N.3    Wei, D.4    Helvie, M.A.5    Adler, D.D.6    Goodsitt, M.M.7
  • 18
    • 0029563534 scopus 로고
    • Segmentation free shared weight networks for automatic vehicle detection
    • P. D. Gader, J. R. Miramonti, Y. Won, and P. Coffield, “Segmentation free shared weight networks for automatic vehicle detection,” Neural Networks 8, 1457-1473 (1995).
    • (1995) Neural Networks , vol.8 , pp. 1457-1473
    • Gader, P.D.1    Miramonti, J.R.2    Won, Y.3    Coffield, P.4
  • 19
    • 0009968412 scopus 로고    scopus 로고
    • Nonlinear cascaded correlation processes to improve the performances of automatic spatial-frequency-selective filters in pattern recognition
    • F. Dubois, “Nonlinear cascaded correlation processes to improve the performances of automatic spatial-frequency-selective filters in pattern recognition,” Appl. Opt. 35, 4589 -4597 (1996).
    • (1996) Appl. Opt , vol.35
    • Dubois, F.1
  • 20
    • 0023133854 scopus 로고
    • Shift-invariant optical associative memories
    • D. Psaltis and J. Hong, “Shift-invariant optical associative memories,” Opt. Eng. 26, 10-15 (1987).
    • (1987) Opt. Eng. , vol.26 , pp. 10-15
    • Psaltis, D.1    Hong, J.2
  • 21
    • 84975539034 scopus 로고
    • Implementation of symbolic substitution logic using optical associative memories
    • F. T. S. Yu and S. Jutamulia, “Implementation of symbolic substitution logic using optical associative memories,” Appl. Opt. 26, 2293-2294 (1987).
    • (1987) Appl. Opt. , vol.26 , pp. 2293-2294
    • Yu, F.T.S.1    Jutamulia, S.2
  • 22
    • 84975624457 scopus 로고
    • Symbolic substitution applications to image processing
    • S. D. Goodman and W. T. Rhodes, “Symbolic substitution applications to image processing,” Appl. Opt. 27, 1708-1714 (1988).
    • (1988) Appl. Opt. , vol.27 , pp. 1708-1714
    • Goodman, S.D.1    Rhodes, W.T.2
  • 23
    • 0038004456 scopus 로고    scopus 로고
    • Statistical performance of cascaded shift invariant processing
    • S. Reed and J. M. Coupland, “Statistical performance of cascaded shift invariant processing,” Appl. Opt. 39, 5949-5955 (2000).
    • (2000) Appl. Opt. , vol.39 , pp. 5949-5955
    • Reed, S.1    Coupland, J.M.2
  • 24
    • 85010148366 scopus 로고    scopus 로고
    • Rotation invariance using cascaded optical processing architectures
    • S. Reed and J. M. Coupland, “Rotation invariance using cascaded optical processing architectures,” Asian J. Phys. 8, 421-429 (1999).
    • (1999) Asian J. Phys , vol.8 , pp. 421-429
    • Reed, S.1    Coupland, J.M.2
  • 27
    • 0027668050 scopus 로고
    • Back-propagation uses prior information efficiently
    • E. Barnard and E. C. Botha, “Back-propagation uses prior information efficiently,” IEEE Trans. Neural Networks 4, 794-802 (1993).
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 794-802
    • Barnard, E.1    Botha, E.C.2
  • 28
    • 26444479778 scopus 로고
    • Optimisation by simulated annealing
    • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimisation by simulated annealing,” Science 220, 671-680 (1983).
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.