메뉴 건너뛰기




Volumn 138, Issue 2-3, 2003, Pages 435-442

A two-step explicit P-stable method for solving second order initial value problems

Author keywords

Characteristic equation; Initial value problem; P stable; Vector product and quotient

Indexed keywords

DIFFERENTIAL EQUATIONS; NUMERICAL METHODS; QUANTUM THEORY; VECTORS;

EID: 0037457715     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0096-3003(02)00154-6     Document Type: Article
Times cited : (13)

References (11)
  • 1
    • 77958409581 scopus 로고
    • Symmetric multistep methods for periodic initial value problems
    • Lambert J.D., Watson I.A. Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18:1976;189-202.
    • (1976) J. Inst. Math. Appl. , vol.18 , pp. 189-202
    • Lambert, J.D.1    Watson, I.A.2
  • 2
    • 0000242366 scopus 로고
    • High-accuracy P-stable methods for y″=f(t,y)
    • Chawla M., Rao P.S. High-accuracy P-stable methods for. y″=f(t,y) IMA J. Numer. Anal. 5:1985;215-220.
    • (1985) IMA J. Numer. Anal. , vol.5 , pp. 215-220
    • Chawla, M.1    Rao, P.S.2
  • 3
    • 0022789944 scopus 로고
    • Two-step fourth-order P-stable methods with phase lag of order six for y″=f(t,y)
    • Chawla M., Rao P.S. Two-step fourth-order P-stable methods with phase lag of order six for. y″=f(t,y) J. Comput. Appl. Math. 16:1986;233-236.
    • (1986) J. Comput. Appl. Math. , vol.16 , pp. 233-236
    • Chawla, M.1    Rao, P.S.2
  • 4
    • 0000168727 scopus 로고
    • A four-step method for the numerical solution of the Schrodinger equation
    • Simos T.E. A four-step method for the numerical solution of the Schrodinger equation. J. Comput. Appl. Math. 30:1990;251-255.
    • (1990) J. Comput. Appl. Math. , vol.30 , pp. 251-255
    • Simos, T.E.1
  • 5
    • 0012186393 scopus 로고
    • High accuracy P-stable methods with minimal phase-lag for y″=f(t,y)
    • Xiang K.L. High accuracy P-stable methods with minimal phase-lag for. y″=f(t,y) JCM. 13:1995;232-242.
    • (1995) JCM , vol.13 , pp. 232-242
    • Xiang, K.L.1
  • 6
    • 0032064442 scopus 로고    scopus 로고
    • On a class of P-stable mono-implicit Runge-Kutta-Nystrom methods
    • Van Deale M. et al. On a class of P-stable mono-implicit Runge-Kutta-Nystrom methods. Appl. Numer. Math. 27:1998;69-82.
    • (1998) Appl. Numer. Math. , vol.27 , pp. 69-82
    • Van Deale, M.1
  • 7
    • 0032068436 scopus 로고    scopus 로고
    • A sixth-order A-stable explicit one-step method for stiff systems
    • Wu X.Y. A sixth-order A-stable explicit one-step method for stiff systems. Comput. Math. Appl. 35:1998;59-64.
    • (1998) Comput. Math. Appl. , vol.35 , pp. 59-64
    • Wu, X.Y.1
  • 8
    • 0034140908 scopus 로고    scopus 로고
    • The vector form of a sixth-order A-stable explicit one-step method for stiff problems
    • Wu X.Y., Xia J.L. The vector form of a sixth-order A-stable explicit one-step method for stiff problems. Comput. Math. Appl. 39:2000;247-257.
    • (2000) Comput. Math. Appl. , vol.39 , pp. 247-257
    • Wu, X.Y.1    Xia, J.L.2
  • 9
    • 0034159174 scopus 로고    scopus 로고
    • An explicit two-step method exact for the scalar test equation y′=λy
    • Wu X.Y., Xia J.L. An explicit two-step method exact for the scalar test equation. y′=λy Comput. Math. Appl. 39:2000;249-257.
    • (2000) Comput. Math. Appl. , vol.39 , pp. 249-257
    • Wu, X.Y.1    Xia, J.L.2
  • 11
    • 0000932450 scopus 로고
    • Unconditionally stable methods for second order differential equations
    • Hairer E. Unconditionally stable methods for second order differential equations. Numer. Math. 32:1979;373-379.
    • (1979) Numer. Math. , vol.32 , pp. 373-379
    • Hairer, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.