메뉴 건너뛰기




Volumn 260, Issue 3, 2003, Pages 565-576

Synchronization of mechanical systems driven by chaotic or random excitation

Author keywords

[No Author keywords available]

Indexed keywords

CHAOS THEORY; DEGREES OF FREEDOM (MECHANICS); ORDINARY DIFFERENTIAL EQUATIONS; OSCILLATORS (MECHANICAL);

EID: 0037456390     PISSN: 0022460X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-460X(02)01049-0     Document Type: Article
Times cited : (14)

References (15)
  • 1
    • 84983790390 scopus 로고
    • Synchronization and chaotization in interacting dynamical systems
    • I. Blekhman, P.S. Landa, M.G. Rosenblum, Synchronization and chaotization in interacting dynamical systems, Applied Mechanics Review 48 (1995) 733.
    • (1995) Applied Mechanics Review , vol.48 , pp. 733
    • Blekhman, I.1    Landa, P.S.2    Rosenblum, M.G.3
  • 2
    • 0000669972 scopus 로고
    • Synchronization of chaos using continuous control
    • T. Kapitaniak, Synchronization of chaos using continuous control, Physical Review E 50 (1994) 1642.
    • (1994) Physical Review E , vol.50 , pp. 1642
    • Kapitaniak, T.1
  • 4
    • 5344269568 scopus 로고
    • Driving systems with chaotic signals
    • L.M. Pecora, T.L. Carroll, Driving systems with chaotic signals, Physical Review A 44 (1991) 2374.
    • (1991) Physical Review A , vol.44 , pp. 2374
    • Pecora, L.M.1    Carroll, T.L.2
  • 5
    • 5344228512 scopus 로고
    • Predictable chaos in slightly perturbed unpredictable chaotic systems
    • K. Pyragas, Predictable chaos in slightly perturbed unpredictable chaotic systems, Physics Letters A 181 (1993) 203.
    • (1993) Physics Letters A , vol.181 , pp. 203
    • Pyragas, K.1
  • 8
    • 0001610216 scopus 로고    scopus 로고
    • Steady state locking in coupled chaotic systems
    • A. Stefański, T. Kapitaniak, Steady state locking in coupled chaotic systems, Physics Letters A 210 (1996) 279.
    • (1996) Physics Letters A , vol.210 , pp. 279
    • Stefański, A.1    Kapitaniak, T.2
  • 9
    • 0002256723 scopus 로고
    • Stability theory of synchronized motion in coupled oscillator systems
    • H. Fujisaka, T. Yamada, Stability theory of synchronized motion in coupled oscillator systems, Progress of Theoretical Physics 69 (1983) 32.
    • (1983) Progress of Theoretical Physics , vol.69 , pp. 32
    • Fujisaka, H.1    Yamada, T.2
  • 10
    • 0000960061 scopus 로고    scopus 로고
    • Using chaos synchronization to estimate the largest Lyapunov exponent of non-smooth systems
    • A. Stefański, T. Kapitaniak, Using chaos synchronization to estimate the largest Lyapunov exponent of non-smooth systems, Discrete Dynamics in Nature and Society 4 (2000) 207.
    • (2000) Discrete Dynamics in Nature and Society , vol.4 , pp. 207
    • Stefański, A.1    Kapitaniak, T.2
  • 11
    • 0034559501 scopus 로고    scopus 로고
    • Estimation of the largest Lyapunov exponent in systems with impacts
    • A. Stefański, Estimation of the largest Lyapunov exponent in systems with impacts, Chaos Solitons and Fractals 11 (2000) 2443.
    • (2000) Chaos Solitons and Fractals , vol.11 , pp. 2443
    • Stefański, A.1
  • 13
    • 0000931523 scopus 로고
    • Symmetry breaking bifurcation for coupled chaotic attractors
    • A. Pikovski, P. Grassberger, Symmetry breaking bifurcation for coupled chaotic attractors, Journal of Physics A 24 (1991) 4587.
    • (1991) Journal of Physics A , vol.24 , pp. 4587
    • Pikovski, A.1    Grassberger, P.2
  • 15
    • 0001426811 scopus 로고
    • The effects of additive noise and drift in the dynamics of the driving on chaotic synchronization
    • R. Brown, H.F. Rulkov, N.B. Tufillaro, The effects of additive noise and drift in the dynamics of the driving on chaotic synchronization, Physics Letters A 196 (1994) 201.
    • (1994) Physics Letters A , vol.196 , pp. 201
    • Brown, R.1    Rulkov, H.F.2    Tufillaro, N.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.