메뉴 건너뛰기




Volumn 187, Issue 2, 2003, Pages 510-519

Semilinear reaction-diffusion systems of several components

Author keywords

Finite time blowup; Global existence; M matrices; Reaction diffusion systems

Indexed keywords


EID: 0037455407     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-0396(02)00075-X     Document Type: Article
Times cited : (15)

References (29)
  • 2
    • 0003940756 scopus 로고
    • Mathematical Problems from Combustion Theory
    • Springer, New York
    • J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory, Springer, New York, 1989.
    • (1989)
    • Bebernes, J.1    Eberly, D.2
  • 3
    • 0000206009 scopus 로고
    • Finite-time blow up for a particular parabolic system
    • J. Bebernes, A. Lacey, Finite-time blow up for a particular parabolic system, SIAM J. Math. Anal. 21 (1990) 1415-1425.
    • (1990) SIAM J. Math. Anal. , vol.21 , pp. 1415-1425
    • Bebernes, J.1    Lacey, A.2
  • 4
    • 0003658403 scopus 로고
    • Nonnegative Matrices in the Mathematical Sciences
    • Academic Press, New York, London
    • A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, London, 1979.
    • (1979)
    • Berman, A.1    Plemmons, R.J.2
  • 6
    • 0001011575 scopus 로고
    • Blow-up estimates for positive solutions of a parabolic system
    • G. Caristi, E. Mitideri, Blow-up estimates for positive solutions of a parabolic system, J. Differential Equations 113 (1994) 265-271.
    • (1994) J. Differential Equations , vol.113 , pp. 265-271
    • Caristi, G.1    Mitideri, E.2
  • 7
    • 0031197250 scopus 로고    scopus 로고
    • Global existence and blow-up for a nonlinear reaction-diffusion system
    • H.W. Chen, Global existence and blow-up for a nonlinear reaction-diffusion system, J. Math. Anal. Appl. 212 (1997) 481-492.
    • (1997) J. Math. Anal. Appl. , vol.212 , pp. 481-492
    • Chen, H.W.1
  • 8
    • 0002800188 scopus 로고    scopus 로고
    • The role of critical exponents in blow-up theorems: The sequel
    • K. Deng, H.A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000) 85-126.
    • (2000) J. Math. Anal. Appl. , vol.243 , pp. 85-126
    • Deng, K.1    Levine, H.A.2
  • 9
    • 0035452748 scopus 로고    scopus 로고
    • A maximum principle for semilinear parabolic systems and applications
    • F. Dickstein, M. Escobedo, A maximum principle for semilinear parabolic systems and applications, Nonlinear Anal. 45 (2001) 825-837.
    • (2001) Nonlinear Anal. , vol.45 , pp. 825-837
    • Dickstein, F.1    Escobedo, M.2
  • 10
    • 34250080175 scopus 로고
    • A semilinear parabolic system in a bounded domain
    • M. Escobedo, M.A. Herrero, A semilinear parabolic system in a bounded domain, Ann. Mat. Pura Appl. (4) (CLXV) (1993) 315-336.
    • (1993) Ann. Mat. Pura Appl. , vol.165 , Issue.4 , pp. 315-336
    • Escobedo, M.1    Herrero, M.A.2
  • 11
    • 0000491924 scopus 로고    scopus 로고
    • The blow-up rate for a semilinear parabolic system
    • M. Fila, P. Quittner, The blow-up rate for a semilinear parabolic system, J. Math. Anal. Appl. 238 (1999) 468-476.
    • (1999) J. Math. Anal. Appl. , vol.238 , pp. 468-476
    • Fila, M.1    Quittner, P.2
  • 12
  • 13
    • 0001791346 scopus 로고
    • A single point blow up for solutions of nonlinear parabolic systems
    • A. Friedman, Y. Giga, A single point blow up for solutions of nonlinear parabolic systems, J. Fac. Sci. Univ. Tokyo Sect. I 34 (1987) 65-79.
    • (1987) J. Fac. Sci. Univ. Tokyo Sect. I , vol.34 , pp. 65-79
    • Friedman, A.1    Giga, Y.2
  • 14
    • 0000546335 scopus 로고
    • Blow-up of positive solutions of semilinear heat equations
    • A. Friedman, B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985) 425-447.
    • (1985) Indiana Univ. Math. J. , vol.34 , pp. 425-447
    • Friedman, A.1    McLeod, B.2
  • 17
    • 0031541195 scopus 로고    scopus 로고
    • Continuation of blowup solutions of nonlinear heat equations in several space dimensions
    • V.A. Galaktionov, J.L. Vazquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997) 1-67.
    • (1997) Comm. Pure Appl. Math. , vol.50 , pp. 1-67
    • Galaktionov, V.A.1    Vazquez, J.L.2
  • 18
    • 84990616610 scopus 로고
    • Asymptotically self-similar blow-up of semilinear heat equations
    • Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985) 297-319.
    • (1985) Comm. Pure Appl. Math. , vol.38 , pp. 297-319
    • Giga, Y.1    Kohn, R.V.2
  • 19
    • 84855452230 scopus 로고
    • Linear and Quasi-Linear Equations of Parabolic Type
    • American Mathematical Society Providence
    • O.A. Ladyženskaja, V.A. Solormikov, N.N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, 1968.
    • (1968)
    • Ladyženskaja, O.A.1    Solormikov, V.A.2    Ural'ceva, N.N.3
  • 20
    • 0025442951 scopus 로고
    • The role of critical exponents in blowup theorems
    • H.A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990) 262-288.
    • (1990) SIAM Rev. , vol.32 , pp. 262-288
    • Levine, H.A.1
  • 21
    • 1142276470 scopus 로고    scopus 로고
    • Blow-up for semilinear parabolic equations with nonlinear memory
    • in press
    • YX Li, C.H. Xie, Blow-up for semilinear parabolic equations with nonlinear memory, Z. Angew. Math. Phys., in press.
    • Z. Angew. Math. Phys.
    • Li, Y.X.1    Xie, C.H.2
  • 22
    • 0013172092 scopus 로고
    • M-matrix characterization II: General M-matrices
    • M. Neumann, R.J. Plemmons, M-matrix characterization II: general M-matrices, Linear Multilinear Algebra 9 (1980) 211-225.
    • (1980) Linear Multilinear Algebra , vol.9 , pp. 211-225
    • Neumann, M.1    Plemmons, R.J.2
  • 23
    • 0013127709 scopus 로고
    • M-matrix characterization I: Nonsingular M-matrix
    • R.J. Plemmons, M-matrix characterization I: nonsingular M-matrix, Linear Algebra Appl. 18 (1977) 175-188.
    • (1977) Linear Algebra Appl. , vol.18 , pp. 175-188
    • Plemmons, R.J.1
  • 24
    • 0032360488 scopus 로고    scopus 로고
    • Blow-up in nonlocal reaction-diffusion equations
    • Ph. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998) 1301-1334.
    • (1998) SIAM J. Math. Anal. , vol.29 , pp. 1301-1334
    • Souplet, Ph.1
  • 25
    • 0031195373 scopus 로고    scopus 로고
    • Self-similar sub-solutions and blowup for nonlinear parabolic equations
    • Ph. Souplet, F.B. Weissler, Self-similar sub-solutions and blowup for nonlinear parabolic equations, J. Math. Anal. Appl. 212 (1997) 60-74.
    • (1997) J. Math. Anal. Appl. , vol.212 , pp. 60-74
    • Souplet, Ph.1    Weissler, F.B.2
  • 26
    • 23044523569 scopus 로고    scopus 로고
    • The blowup for weakly coupled reaction-diffusion systems
    • L.W. Wang, The blowup for weakly coupled reaction-diffusion systems, Proc. Amer. Math. Soc. 129 (2000) 89-95.
    • (2000) Proc. Amer. Math. Soc. , vol.129 , pp. 89-95
    • Wang, L.W.1
  • 27
    • 0034340158 scopus 로고    scopus 로고
    • Global existence and finite blowup for a reaction diffusion system
    • M.X. Wang, Global existence and finite blowup for a reaction diffusion system, Z. Angew. Math. Phys. 51 (2000) 160-167.
    • (2000) Z. Angew. Math. Phys. , vol.51 , pp. 160-167
    • Wang, M.X.1
  • 28
    • 0035285489 scopus 로고    scopus 로고
    • Blowup rate estimates for semilinear parabolic systems
    • M.X. Wang, Blowup rate estimates for semilinear parabolic systems, J. Differential Equations 170 (2001) 317- 324.
    • (2001) J. Differential Equations , vol.170 , pp. 317-324
    • Wang, M.X.1
  • 29
    • 0001143045 scopus 로고    scopus 로고
    • Reaction-diffusion systems with nonlinear boundary conditions
    • M.X. Wang, Y.M. Wang, Reaction-diffusion systems with nonlinear boundary conditions, Sci. China Ser. A 39 (1996) 834-840.
    • (1996) Sci. China Ser. A , vol.39 , pp. 834-840
    • Wang, M.X.1    Wang, Y.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.