-
1
-
-
0011851127
-
-
Propst, C. L., Perun, T. J., Eds.; Marcel Dekker: New York
-
Perun, T. J.; Propst, C. L. In Nucleic Acid Targeted Drug Design; Propst, C. L., Perun, T. J., Eds.; Marcel Dekker: New York, 1992; p 1.
-
(1992)
Nucleic Acid Targeted Drug Design
, pp. 1
-
-
Perun, T.J.1
Propst, C.L.2
-
4
-
-
20144365291
-
-
Lescrinier T., Hendrix C., Kerremans L., Rozenski J., Link A., Samyn B., Van Aerschot A., Lescrinier E., Eritja R., Van Beeumen J., Herdewijn P. Chem. Eur. J. 4:1998;425.
-
(1998)
Chem. Eur. J.
, vol.4
, pp. 425
-
-
Lescrinier, T.1
Hendrix, C.2
Kerremans, L.3
Rozenski, J.4
Link, A.5
Samyn, B.6
Van Aerschot, A.7
Lescrinier, E.8
Eritja, R.9
Van Beeumen, J.10
Herdewijn, P.11
-
6
-
-
0031758462
-
-
Bischoff G., Bischoff R., Birch-Hirschfeld E., Gromann U., Lindau S., Meister W.-V., Bambirra S., Bohley C., Hoffmann S. J. Biomol. Struct. Dyn. 16:1998;187.
-
(1998)
J. Biomol. Struct. Dyn.
, vol.16
, pp. 187
-
-
Bischoff, G.1
Bischoff, R.2
Birch-Hirschfeld, E.3
Gromann, U.4
Lindau, S.5
Meister, W.-V.6
Bambirra, S.7
Bohley, C.8
Hoffmann, S.9
-
8
-
-
0035882907
-
-
Gonzalez C., Moore M., Ribeiro S., Schmitz U., Schroth G.P., Turin L., Bruice T.W. Nucleic Acids Res. 29:2001;85e.
-
(2001)
Nucleic Acids Res.
, vol.29
-
-
Gonzalez, C.1
Moore, M.2
Ribeiro, S.3
Schmitz, U.4
Schroth, G.P.5
Turin, L.6
Bruice, T.W.7
-
9
-
-
0033867023
-
-
Boger D.L., Dechantsreiter M.A., Takahiro I., Fink B., Hedrick M.P. Bioorg. Med. Chem. 8:2000;2049.
-
(2000)
Bioorg. Med. Chem.
, vol.8
, pp. 2049
-
-
Boger, D.L.1
Dechantsreiter, M.A.2
Takahiro, I.3
Fink, B.4
Hedrick, M.P.5
-
12
-
-
0036376938
-
-
Chaltin, P.; Lescrinier, E.; Lescrinier, T.; Rozenski, J.; Hendrix, C.; Rosemeyer, H.; Busson, R.; Van Aerschot, A.; Herdewijn, P. Helv. Chim. Acta 2002, 85, 2258.
-
(2002)
Helv. Chim. Acta
, vol.85
, pp. 2258
-
-
Chaltin, P.1
Lescrinier, E.2
Lescrinier, T.3
Rozenski, J.4
Hendrix, C.5
Rosemeyer, H.6
Busson, R.7
Van Aerschot, A.8
Herdewijn, P.9
-
13
-
-
0034833710
-
-
Boger D.L., Fink B.E., Brunette S.R., Winston C.T., Hedrick M.P. J. Am. Chem. Soc. 123:2001;5878.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 5878
-
-
Boger, D.L.1
Fink, B.E.2
Brunette, S.R.3
Winston, C.T.4
Hedrick, M.P.5
-
14
-
-
0030976612
-
-
Hamy F., Felder E.R., Heizmann G., Lazdins J., Aboul-Ela F., Varani G., Karn J., Klimkait T. Proc. Natl. Acad. Sci. U.S.A. 94:1997;3548.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 3548
-
-
Hamy, F.1
Felder, E.R.2
Heizmann, G.3
Lazdins, J.4
Aboul-Ela, F.5
Varani, G.6
Karn, J.7
Klimkait, T.8
-
16
-
-
0011988772
-
-
For the ethidium bromide experiments, the same target sequence was used as originally applied in the gel shift screening experiments [5′-(AGATTGTGCAATGT)-3′:5′-(ACATTGCACAATCT)-3′]. Wells of Costar black 96-well plates were loaded with 2 μL of a 50 μM dsDNA solution, 2 μL of a 0.35 mM EtBr solution and a varying volume of oligopeptides (individual or mixtures) to obtain the necessary concentrations. The appropriate volume of a Tris/NaCl buffer (10 mM Tris-10 mM NaCl pH, 7.4) was added to obtain a total volume of 100 μL per well. Before adding the DNA to the wells, it was rendered double-stranded by placing equal amounts of the two complementary strands for 3 min at 80 °C, at room temperature for 5 min and at 4 °C for 20 min. After incubation at room temperature for 30 min, each well was read on a FL600 Microplate Fluorescence reader, with 530/25 nm as excitation wavelength and 590/35 nm as the emission detection wavelength. Two control wells (no agent=100% fluorescence, no DNA=0% fluorescence) were used per 12 samples. Fluorescence readings are reported as % fluorescence relative to the control wells. For dissociation constant determinations, several oligopeptide concentrations are used. Generally two to three sets of measurements were performed to calculate average values.
-
-
-
|