-
1
-
-
0014172728
-
-
For examples, see: (a) Chen, K. K.; Kovarikova, A. J. Pharm. Sci. 1967, 56, 1535; (b) Kupchan, S. M.; Moniot, J. L.; Sigel, C. W.; Hemingway, R. J. J. Org. Chem. 1971, 36, 2611; (c) Hayashi, Y.; Yuki, Y.; Matsumoto, T.; Sakan, T. Tetrahedron Lett. 1977, 18, 3637; (d) Prasad, J. V. N. V.; Para. K. S.; Lunney, E. A.; Ortwine, D. F.; Dunbar, J. B., Jr.; Ferguson, D.; Tummino, P. J.; Hupe, D.; Tait, B. D.; Domagala, J. M.; Humblet, C.; Bhat, T. N.; Liu, B.; Guerin, D. M. A.; Baldwin, E. T.; Erickson, J. W.; Sawyer, T. K. J. Am. Chem. Soc. 1994, 116, 6989.
-
(1967)
J. Pharm. Sci.
, vol.56
, pp. 1535
-
-
Chen, K.K.1
Kovarikova, A.2
-
2
-
-
0015218429
-
-
For examples, see: (a) Chen, K. K.; Kovarikova, A. J. Pharm. Sci. 1967, 56, 1535; (b) Kupchan, S. M.; Moniot, J. L.; Sigel, C. W.; Hemingway, R. J. J. Org. Chem. 1971, 36, 2611; (c) Hayashi, Y.; Yuki, Y.; Matsumoto, T.; Sakan, T. Tetrahedron Lett. 1977, 18, 3637; (d) Prasad, J. V. N. V.; Para. K. S.; Lunney, E. A.; Ortwine, D. F.; Dunbar, J. B., Jr.; Ferguson, D.; Tummino, P. J.; Hupe, D.; Tait, B. D.; Domagala, J. M.; Humblet, C.; Bhat, T. N.; Liu, B.; Guerin, D. M. A.; Baldwin, E. T.; Erickson, J. W.; Sawyer, T. K. J. Am. Chem. Soc. 1994, 116, 6989.
-
(1971)
J. Org. Chem.
, vol.36
, pp. 2611
-
-
Kupchan, S.M.1
Moniot, J.L.2
Sigel, C.W.3
Hemingway, R.J.4
-
3
-
-
0013189005
-
-
For examples, see: (a) Chen, K. K.; Kovarikova, A. J. Pharm. Sci. 1967, 56, 1535; (b) Kupchan, S. M.; Moniot, J. L.; Sigel, C. W.; Hemingway, R. J. J. Org. Chem. 1971, 36, 2611; (c) Hayashi, Y.; Yuki, Y.; Matsumoto, T.; Sakan, T. Tetrahedron Lett. 1977, 18, 3637; (d) Prasad, J. V. N. V.; Para. K. S.; Lunney, E. A.; Ortwine, D. F.; Dunbar, J. B., Jr.; Ferguson, D.; Tummino, P. J.; Hupe, D.; Tait, B. D.; Domagala, J. M.; Humblet, C.; Bhat, T. N.; Liu, B.; Guerin, D. M. A.; Baldwin, E. T.; Erickson, J. W.; Sawyer, T. K. J. Am. Chem. Soc. 1994, 116, 6989.
-
(1977)
Tetrahedron Lett.
, vol.18
, pp. 3637
-
-
Hayashi, Y.1
Yuki, Y.2
Matsumoto, T.3
Sakan, T.4
-
4
-
-
0028094959
-
-
For examples, see: (a) Chen, K. K.; Kovarikova, A. J. Pharm. Sci. 1967, 56, 1535; (b) Kupchan, S. M.; Moniot, J. L.; Sigel, C. W.; Hemingway, R. J. J. Org. Chem. 1971, 36, 2611; (c) Hayashi, Y.; Yuki, Y.; Matsumoto, T.; Sakan, T. Tetrahedron Lett. 1977, 18, 3637; (d) Prasad, J. V. N. V.; Para. K. S.; Lunney, E. A.; Ortwine, D. F.; Dunbar, J. B., Jr.; Ferguson, D.; Tummino, P. J.; Hupe, D.; Tait, B. D.; Domagala, J. M.; Humblet, C.; Bhat, T. N.; Liu, B.; Guerin, D. M. A.; Baldwin, E. T.; Erickson, J. W.; Sawyer, T. K. J. Am. Chem. Soc. 1994, 116, 6989.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 6989
-
-
Prasad, J.V.N.V.1
Para, K.S.2
Lunney, E.A.3
Ortwine, D.F.4
Dunbar J.B., Jr.5
Ferguson, D.6
Tummino, P.J.7
Hupe, D.8
Tait, B.D.9
Domagala, J.M.10
Humblet, C.11
Bhat, T.N.12
Liu, B.13
Guerin, D.M.A.14
Baldwin, E.T.15
Erickson, J.W.16
Sawyer, T.K.17
-
9
-
-
85031225609
-
-
A typical experimental procedure of the reaction of 2-alkynone with an active methine compound: To 60% NaH or sodium ethoxide (0.400 mmol) was added a solution of an active methine compound (0.500 mmol) in 1,4-dioxane (2.0 mL) and a solution of 2-alkynone (0.200 mmol) in 1,4-dioxane (2.0 mL) successively at room temperature. The reaction mixture was stirred under reflux for 1 h and then cooled to room temperature. Brine (10 mL) was added to quench the reaction. The mixture was extracted with dichloromethane (15 mL×3). The combined organic layers were dried over sodium sulfate. The solvents were evaporated in vacuo, and then the residue was purified by preparative TLC on silica gel to give 2-pyrone and decarboxylated 2-pyrone.
-
A typical experimental procedure of the reaction of 2-alkynone with an active methine compound: To 60% NaH or sodium ethoxide (0.400 mmol) was added a solution of an active methine compound (0.500 mmol) in 1,4-dioxane (2.0 mL) and a solution of 2-alkynone (0.200 mmol) in 1,4-dioxane (2.0 mL) successively at room temperature. The reaction mixture was stirred under reflux for 1 h and then cooled to room temperature. Brine (10 mL) was added to quench the reaction. The mixture was extracted with dichloromethane (15 mL×3). The combined organic layers were dried over sodium sulfate. The solvents were evaporated in vacuo, and then the residue was purified by preparative TLC on silica gel to give 2-pyrone and decarboxylated 2-pyrone.
-
-
-
-
10
-
-
85031215710
-
-
When dimethyl allylmalonate was used instead of diethyl allylmalonate, the desired 2-pyrone and its decarboxylated 2-pyrone were obtained in 24 and 6% yields, respectively.
-
When dimethyl allylmalonate was used instead of diethyl allylmalonate, the desired 2-pyrone and its decarboxylated 2-pyrone were obtained in 24 and 6% yields, respectively.
-
-
-
-
11
-
-
85031222753
-
-
For example, the reaction of ethyl 2-methyl-3-oxobutanoate 6 (R=Me) with the imine derived from 3-phenyl-2-propynal and 4-methoxyaniline gave N-(4-methoxyphenyl)-5-acetyl-3-methyl-4-phenyl-2-pyridone in 64% yield. The details of the 2-pyridone synthesis via nucleophilic addition of β-ketoesters to alkynyl imines will be reported in a full paper.
-
For example, the reaction of ethyl 2-methyl-3-oxobutanoate 6 (R=Me) with the imine derived from 3-phenyl-2-propynal and 4-methoxyaniline gave N-(4-methoxyphenyl)-5-acetyl-3-methyl-4-phenyl-2-pyridone in 64% yield. The details of the 2-pyridone synthesis via nucleophilic addition of β-ketoesters to alkynyl imines will be reported in a full paper.
-
-
-
-
12
-
-
85031227390
-
-
In the case of malonic esters as a nucleophile, it would be possible to generate cyclobutenone 22. See Ref. 5.
-
In the case of malonic esters as a nucleophile, it would be possible to generate cyclobutenone 22. See Ref. 5.
-
-
-
|