-
2
-
-
0021497366
-
Zero location with respect to the unit circle of discrete-time linear system polynomials
-
Y. Bistritz Zero location with respect to the unit circle of discrete-time linear system polynomials Proc. IEEE 72 1984 1131 1142
-
(1984)
Proc. IEEE
, vol.72
, pp. 1131-1142
-
-
Bistritz, Y.1
-
3
-
-
0020840365
-
The one-dimensional inverse problem of reflection seismology
-
K.P. Bube, and R. Burridge The one-dimensional inverse problem of reflection seismology SIAM Rev. 25 1983 497 559
-
(1983)
SIAM Rev.
, vol.25
, pp. 497-559
-
-
Bube, K.P.1
Burridge, R.2
-
5
-
-
0023348295
-
On the splitting of classical algorithms in linear prediction theory
-
P. Delsarte, and Y. Genin On the splitting of classical algorithms in linear prediction theory IEEE Trans. Acoust. Speech Signal Process. ASSP-35 1987 645 653
-
(1987)
IEEE Trans. Acoust. Speech Signal Process.
, vol.35 ASSP
, pp. 645-653
-
-
Delsarte, P.1
Genin, Y.2
-
7
-
-
0041355748
-
Matrix displacement decompositions and applications to Toeplitz linear systems
-
C. Di Fiore, and P. Zellini Matrix displacement decompositions and applications to Toeplitz linear systems Linear Algebra Appl. 268 1998 197 225
-
(1998)
Linear Algebra Appl.
, vol.268
, pp. 197-225
-
-
Di Fiore, C.1
Zellini, P.2
-
8
-
-
0035871544
-
Chebyshev-Hankel matrices and the splitting approach for centrosymmetric Toeplitz-plus-Hankel matrices
-
G. Heinig Chebyshev-Hankel matrices and the splitting approach for centrosymmetric Toeplitz-plus-Hankel matrices Linear Algebra Appl. 327 1-3 2001 181 196
-
(2001)
Linear Algebra Appl.
, vol.327
, Issue.13
, pp. 181-196
-
-
Heinig, G.1
-
9
-
-
84863847248
-
Kernel structure of Toeplitz-plus-Hankel matrices
-
G. Heinig, Kernel structure of Toeplitz-plus-Hankel matrices, Linear Algebra Appl. 340 (2002) 1-13
-
(2002)
Linear Algebra Appl.
, vol.340
, pp. 1-13
-
-
Heinig, G.1
-
11
-
-
0003025142
-
On the inverses of Toeplitz-plus-Hankel matrices
-
G. Heinig, and K. Rost On the inverses of Toeplitz-plus-Hankel matrices Linear Algebra Appl. 106 1988 39 52
-
(1988)
Linear Algebra Appl.
, vol.106
, pp. 39-52
-
-
Heinig, G.1
Rost, K.2
-
12
-
-
0042579313
-
DFT representations of Toeplitz-plus-Hankel Bezoutians with application to fast matrix-vector multiplication
-
G. Heinig, and K. Rost DFT representations of Toeplitz-plus-Hankel Bezoutians with application to fast matrix-vector multiplication Linear Algebra Appl. 284 1998 157 175
-
(1998)
Linear Algebra Appl.
, vol.284
, pp. 157-175
-
-
Heinig, G.1
Rost, K.2
-
13
-
-
0033904989
-
Hartley transform representations of inverses of real Toeplitz-plus-Hankel matrices
-
G. Heinig, and K. Rost Hartley transform representations of inverses of real Toeplitz-plus-Hankel matrices Numer. Funct. Anal. Optim. 21 2000 175 189
-
(2000)
Numer. Funct. Anal. Optim.
, vol.21
, pp. 175-189
-
-
Heinig, G.1
Rost, K.2
-
14
-
-
31244431655
-
Centro-symmetric and centro-skewsymmetric Toeplitz matrices and Bezoutians
-
G. Heinig, K. Rost, Centro-symmetric and centro-skewsymmetric Toeplitz matrices and Bezoutians, Linear Algebra Appl. 343-344 (2002) 195-209
-
(2002)
Linear Algebra Appl.
, vol.343-344
, pp. 195-209
-
-
Heinig, G.1
Rost, K.2
-
15
-
-
2042467858
-
Efficient inversion formulas for Toeplitz-plus-Hankel matrices using trigonometric transformations
-
V. Olshevsky (Ed.) AMS-Series Contemporary Mathematics
-
G. Heinig, K. Rost, Efficient inversion formulas for Toeplitz-plus-Hankel matrices using trigonometric transformations, in: V. Olshevsky (Ed.), Structured Matrices in Mathematics, Computer Science, and Engineering, vol. 2, AMS-Series Contemporary Mathematics, 2001, pp. 247-264
-
(2001)
Structured Matrices in Mathematics, Computer Science, and Engineering
, vol.2
, pp. 247-264
-
-
Heinig, G.1
Rost, K.2
-
17
-
-
0002225475
-
The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations
-
M. Krein, and M. Naimark The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations Linear Multilinear Algebra 10 1981 265 308
-
(1981)
Linear Multilinear Algebra
, vol.10
, pp. 265-308
-
-
Krein, M.1
Naimark, M.2
|