-
3
-
-
0030286455
-
Accurate parametrization of conics by NURBS
-
Blanc C., Schlick C. Accurate parametrization of conics by NURBS. IEEE Comput Graphics Appl. 16:(6):1996;64-71.
-
(1996)
IEEE Comput Graphics Appl
, vol.16
, Issue.6
, pp. 64-71
-
-
Blanc, C.1
Schlick, C.2
-
4
-
-
0003078822
-
How many ways can you draw a circle?
-
Blinn J. How many ways can you draw a circle? IEEE Comput Graphics Appl. 7:(8):1987;39-44.
-
(1987)
IEEE Comput Graphics Appl
, vol.7
, Issue.8
, pp. 39-44
-
-
Blinn, J.1
-
5
-
-
0013410380
-
Formulations of composite parametric cubic curves and circle approximations
-
Chen D.-P. Formulations of composite parametric cubic curves and circle approximations. Comput-Aided Des. 28:1996;567-573.
-
(1996)
Comput-Aided Des
, vol.28
, pp. 567-573
-
-
Chen, D.-P.1
-
6
-
-
0029288903
-
Higher order Bezier circles
-
Chou J.J. Higher order Bezier circles. Comput-Aided Des. 27:1995;303-309.
-
(1995)
Comput-Aided Des
, vol.27
, pp. 303-309
-
-
Chou, J.J.1
-
7
-
-
84886509746
-
The origins of the teapot
-
Crow F. The origins of the teapot. IEEE Comput Graphics Appl. 7:(1):1987;8-19.
-
(1987)
IEEE Comput Graphics Appl
, vol.7
, Issue.1
, pp. 8-19
-
-
Crow, F.1
-
10
-
-
0032169217
-
Circular arc approximation by quintic polynomial curves
-
Fang L. Circular arc approximation by quintic polynomial curves. Comput Aided Geomet Des. 15:1998;843-861.
-
(1998)
Comput Aided Geomet Des
, vol.15
, pp. 843-861
-
-
Fang, L.1
-
12
-
-
0026202613
-
Approximation of circular arcs by cubic polynomials
-
Goldapp M. Approximation of circular arcs by cubic polynomials. Comput Aided Geomet Des. 8:1991;227-238.
-
(1991)
Comput Aided Geomet Des
, vol.8
, pp. 227-238
-
-
Goldapp, M.1
-
14
-
-
0001712209
-
Planar curve offset based on circle approximation
-
Lee I.-K., Kim M.-S., Elber G. Planar curve offset based on circle approximation. Comput-Aided Des. 28:(8):1975;617-630.
-
(1975)
Comput-Aided Des
, vol.28
, Issue.8
, pp. 617-630
-
-
Lee, I.-K.1
Kim, M.-S.2
Elber, G.3
-
15
-
-
0003112863
-
Best approximation of circle segments by quadratic Bezier curves
-
P.J. Laurent, A. Le Mehaute, & L.L. Schumaker. Boston, MA: Academic Press
-
Morken K. Best approximation of circle segments by quadratic Bezier curves. Laurent P.J., Le Mehaute A., Schumaker L.L. Curves and surfaces. 1991;331-336 Academic Press, Boston, MA.
-
(1991)
Curves and Surfaces
, pp. 331-336
-
-
Morken, K.1
-
16
-
-
0016239269
-
Interactive computer graphics application of the parametric bi-cubic surface to engineering design problems
-
R.E. Barnhill, & R.F. Riesenfeld. New York: Academic Press
-
Peters G.J. Interactive computer graphics application of the parametric bi-cubic surface to engineering design problems. Barnhill R.E., Riesenfeld R.F. Computer aided geometric design. 1974;259-302 Academic Press, New York.
-
(1974)
Computer Aided Geometric Design
, pp. 259-302
-
-
Peters, G.J.1
-
17
-
-
0024735277
-
A menagerie of rational B-spline circles
-
Piegl L., Tiller W. A menagerie of rational B-spline circles. IEEE Comput Graphics Appl. 9:(5):1989;48-56.
-
(1989)
IEEE Comput Graphics Appl
, vol.9
, Issue.5
, pp. 48-56
-
-
Piegl, L.1
Tiller, W.2
-
19
-
-
0033681453
-
Curve interpolation with arbitrary end derivatives
-
Piegl L., Tiller W. Curve interpolation with arbitrary end derivatives. Engng Comput. 16:2000;73-79.
-
(2000)
Engng Comput
, vol.16
, pp. 73-79
-
-
Piegl, L.1
Tiller, W.2
-
21
-
-
0020106719
-
A method of shape description for mechanical engineering practice
-
Renner G. A method of shape description for mechanical engineering practice. Comput Ind. 3:1982;137-142.
-
(1982)
Comput Ind
, vol.3
, pp. 137-142
-
-
Renner, G.1
-
22
-
-
0021727749
-
Conventional elements of engineering drawings
-
K. Bo, & H.A. Tucker. Amsterdam: Elsevier
-
Renner G. Conventional elements of engineering drawings. Bo K., Tucker H.A. Eurographics'84. 1984;59-72 Elsevier, Amsterdam.
-
(1984)
Eurographics'84
, pp. 59-72
-
-
Renner, G.1
-
23
-
-
18144436167
-
Higher-order Bezier circles
-
Sanchez-Reyes J. Higher-order Bezier circles. Comput-Aided Des. 29:1997;469-472.
-
(1997)
Comput-Aided Des
, vol.29
, pp. 469-472
-
-
Sanchez-Reyes, J.1
|