-
1
-
-
0001425123
-
On the existence of multiple solutions for a class of nonlinear boundary value problems
-
Ambrosetti A. On the existence of multiple solutions for a class of nonlinear boundary value problems. Rend. Sem. Mat. Univ. Padova. 49:1973;195-204.
-
(1973)
Rend. Sem. Mat. Univ. Padova
, vol.49
, pp. 195-204
-
-
Ambrosetti, A.1
-
2
-
-
0003692839
-
-
Tech. Sum. Report, Math. Res. Center, Univ. Wisconsin-Madison
-
A. Ambrosetti, A perturbation theorem for superlinear boundary value problems, Tech. Sum. Report, Math. Res. Center, Univ. Wisconsin-Madison, Vol. 1446, 1974.
-
(1974)
A Perturbation Theorem for Superlinear Boundary Value Problems
, vol.1446
-
-
Ambrosetti, A.1
-
3
-
-
34548350707
-
Dual variational methods in critical point theory and applications
-
Ambrosetti A., Rabinowitz P.H. Dual variational methods in critical point theory and applications. J. Funct. Anal. 14:1973;349-381.
-
(1973)
J. Funct. Anal.
, vol.14
, pp. 349-381
-
-
Ambrosetti, A.1
Rabinowitz, P.H.2
-
4
-
-
84968503357
-
A perturbation method in critical point theory and applications
-
Bahri A., Berestycki H. A perturbation method in critical point theory and applications. Trans. Amer. Math. Soc. 267:1981;1-32.
-
(1981)
Trans. Amer. Math. Soc.
, vol.267
, pp. 1-32
-
-
Bahri, A.1
Berestycki, H.2
-
5
-
-
0034347258
-
The multiplicity of solutions in non-homogeneous boundary value problems
-
Bolle P., Ghoussoub N., Tehrani H. The multiplicity of solutions in non-homogeneous boundary value problems. Manuscripta Math. 101:2000;325-350.
-
(2000)
Manuscripta Math.
, vol.101
, pp. 325-350
-
-
Bolle, P.1
Ghoussoub, N.2
Tehrani, H.3
-
6
-
-
0001411903
-
Multiplicity results of an elliptic equation with non-homogeneous boundary conditions
-
Candela A.M., Salvatore A. Multiplicity results of an elliptic equation with non-homogeneous boundary conditions. Topol. Methods Nonlinear Anal. 11:1998;1-18.
-
(1998)
Topol. Methods Nonlinear Anal.
, vol.11
, pp. 1-18
-
-
Candela, A.M.1
Salvatore, A.2
-
7
-
-
51249191299
-
A minimum-maximum principle for a class of nonlinear integral equations
-
Coffman C.V. A minimum-maximum principle for a class of nonlinear integral equations. J. Analyse Math. 22:1969;391-419.
-
(1969)
J. Analyse Math.
, vol.22
, pp. 391-419
-
-
Coffman, C.V.1
-
8
-
-
0030295222
-
Multiple solutions for a classical problem in the calculus of variations
-
Ekeland I., Ghoussoub N., Tehrani H. Multiple solutions for a classical problem in the calculus of variations. J. Differential Equations. 131:1996;229-243.
-
(1996)
J. Differential Equations
, vol.131
, pp. 229-243
-
-
Ekeland, I.1
Ghoussoub, N.2
Tehrani, H.3
-
9
-
-
0000683837
-
Multiple solutions for a class of nonlinear elliptic boundary value problems
-
Hempel J.A. Multiple solutions for a class of nonlinear elliptic boundary value problems. Indiana Univ. Math. J. 20:1971;983-996.
-
(1971)
Indiana Univ. Math. J.
, vol.20
, pp. 983-996
-
-
Hempel, J.A.1
-
10
-
-
0000594598
-
Multiple critical points of perturbed symmetric functionals
-
Rabinowitz P.H. Multiple critical points of perturbed symmetric functionals. Trans. Amer. Math. Soc. 272:1982;753-769.
-
(1982)
Trans. Amer. Math. Soc.
, vol.272
, pp. 753-769
-
-
Rabinowitz, P.H.1
-
11
-
-
0000538563
-
Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems
-
Struwe M. Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems. Manuscripta Math. 32:1980;335-364.
-
(1980)
Manuscripta Math.
, vol.32
, pp. 335-364
-
-
Struwe, M.1
-
13
-
-
84954662413
-
Morse indices at critical points related to the symmetric mountain pass theorem and applications
-
Tanaka K. Morse indices at critical points related to the symmetric mountain pass theorem and applications. Comm. Partial Differential Equations. 14:1989;99-128.
-
(1989)
Comm. Partial Differential Equations
, vol.14
, pp. 99-128
-
-
Tanaka, K.1
|