-
1
-
-
0010639331
-
A finite‐element collocation method for variably saturated flow in two space dimensions
-
1 M. B. Allen and C. L. Murphy, A finite‐element collocation method for variably saturated flow in two space dimensions, Water Resour Res 22 (1986), 1537–1542.
-
(1986)
Water Resour Res
, vol.22
, pp. 1537-1542
-
-
Allen, M.B.1
Murphy, C.L.2
-
2
-
-
84977354567
-
Hydraulics of Groundwater
-
2 J. Bear, Hydraulics of Groundwater, New York, McGraw‐Hill, 1979.
-
(1979)
-
-
Bear, J.1
-
3
-
-
0000898485
-
Collocation methods for parabolic partial differential equations in one space dimension
-
3 J. H. Cerutti and S. V. Parter, Collocation methods for parabolic partial differential equations in one space dimension, Numer Math 26 (1976), 227–254.
-
(1976)
Numer Math
, vol.26
, pp. 227-254
-
-
Cerutti, J.H.1
Parter, S.V.2
-
4
-
-
84968516225
-
A finite element collocation method for quasilinear parabolic equations
-
4 J. Douglas and T. Dupont, A finite element collocation method for quasilinear parabolic equations, Math Comp 27 (1973), 17–28.
-
(1973)
Math Comp
, vol.27
, pp. 17-28
-
-
Douglas, J.1
Dupont, T.2
-
5
-
-
0035281751
-
Orthogonal spline collocation methods for partial differential equations, Numerical Analysis 2000, Vol. VII, Partial differential equations
-
5 B. Bialecki and G. Fairweather, Orthogonal spline collocation methods for partial differential equations, Numerical Analysis 2000, Vol. VII, Partial differential equations, J Comput Appl Math 128 (2001), 55–82.
-
(2001)
J Comput Appl Math
, vol.128
, pp. 55-82
-
-
Bialecki, B.1
Fairweather, G.2
-
6
-
-
84985359611
-
Generalized alternating‐direction collocation methods for parabolic equations. II. Transport equations with application to seawater intrusion problems
-
6 M. A. Celia and G. F. Pinder, Generalized alternating‐direction collocation methods for parabolic equations. II. Transport equations with application to seawater intrusion problems, Numer Methods Partial Differential Eq 6 (1990), 215–230.
-
(1990)
Numer Methods Partial Differential Eq
, vol.6
, pp. 215-230
-
-
Celia, M.A.1
Pinder, G.F.2
-
7
-
-
0022697663
-
Analyses of spline collocation methods for parabolic and hyperbolic problems in two space variables
-
7 C. E. Greenwell‐Yanik and G. Fairweather, Analyses of spline collocation methods for parabolic and hyperbolic problems in two space variables, SIAM J Numer Anal 23 (1986), 282–296.
-
(1986)
SIAM J Numer Anal
, vol.23
, pp. 282-296
-
-
Greenwell‐Yanik, C.E.1
Fairweather, G.2
-
8
-
-
0000383666
-
An C1 finite element collocation method for elliptic equations
-
8 P. Percell and M. F. Wheeler, An C 1 finite element collocation method for elliptic equations, SIAM J Numer Anal 17 (1980), 605–622.
-
(1980)
SIAM J Numer Anal
, vol.17
, pp. 605-622
-
-
Percell, P.1
Wheeler, M.F.2
-
9
-
-
16544376185
-
Single‐degree freedom collocation method using Hermite polynomials
-
9 L. Wu and G. F. Pinder, Single‐degree freedom collocation method using Hermite polynomials, Contemp Math 295 (2002), 489–499.
-
(2002)
Contemp Math
, vol.295
, pp. 489-499
-
-
Wu, L.1
Pinder, G.F.2
-
10
-
-
0033297107
-
An ELLAM scheme for advection‐diffusion equations in two dimensions
-
10 H. Wang, H. K. Dahle, R. E. Ewing, M. S. Espedal, R. C. Sharpley, and S. Man, An ELLAM scheme for advection‐diffusion equations in two dimensions, SIAM J Sci Comput 20 (1999), 2160–2194.
-
(1999)
SIAM J Sci Comput
, vol.20
, pp. 2160-2194
-
-
Wang, H.1
Dahle, H.K.2
Ewing, R.E.3
Espedal, M.S.4
Sharpley, R.C.5
Man, S.6
-
11
-
-
0003286277
-
A family of Eulerian‐Lagrangian localized adjoint methods for multi‐dimensional advection‐reaction equations
-
11 H. Wang, R. E. Ewing, G. Qin, S. L. Lyons, M. Al‐Lawatia, and S. Man, A family of Eulerian‐Lagrangian localized adjoint methods for multi‐dimensional advection‐reaction equations, J Comput Phys 152 (1999), 120–163.
-
(1999)
J Comput Phys
, vol.152
, pp. 120-163
-
-
Wang, H.1
Ewing, R.E.2
Qin, G.3
Lyons, S.L.4
Al‐Lawatia, M.5
Man, S.6
-
12
-
-
0001235787
-
Numerical methods for convection‐dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures
-
12 J. Douglas, Jr. and T. F. Russell, Numerical methods for convection‐dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J Numer Anal 19 (1982), 871–885.
-
(1982)
SIAM J Numer Anal
, vol.19
, pp. 871-885
-
-
Douglas, J.1
Russell, T.F.2
-
13
-
-
0025639748
-
An Eulerian‐Lagrangian localized adjoint method for the advection‐diffusion equation
-
13 M. A. Celia, T. F. Russell, I. Herrera, and R. E. Ewing, An Eulerian‐Lagrangian localized adjoint method for the advection‐diffusion equation, Adv Water Res 13 (1990), 187–206.
-
(1990)
Adv Water Res
, vol.13
, pp. 187-206
-
-
Celia, M.A.1
Russell, T.F.2
Herrera, I.3
Ewing, R.E.4
-
14
-
-
77957214696
-
Eulerian‐Lagrangian localized methods for convection‐diffusion equations and their convergence analysis
-
14 H. Wang, R. E. Ewing, and T. F. Russell, Eulerian‐Lagrangian localized methods for convection‐diffusion equations and their convergence analysis, IMA J Numer Anal 15 (1995), 405–459.
-
(1995)
IMA J Numer Anal
, vol.15
, pp. 405-459
-
-
Wang, H.1
Ewing, R.E.2
Russell, T.F.3
-
15
-
-
0000654496
-
Stability of the Lagrangian‐Galerkin method with nonexact integration
-
15 K. W. Morton, A. Priestley, and E. Süli, Stability of the Lagrangian‐Galerkin method with nonexact integration, RAIRO M2 AN 22 (1988), 123–151.
-
(1988)
RAIRO M2 AN
, vol.22
, pp. 123-151
-
-
Morton, K.W.1
Priestley, A.2
Süli, E.3
-
16
-
-
0000935266
-
A difference scheme for numerical computation of discontinuous solutions of fluid dynamics
-
16 S. K. Godunov, A difference scheme for numerical computation of discontinuous solutions of fluid dynamics, Mat Sb 47 (1959), 271–306.
-
(1959)
Mat Sb
, vol.47
, pp. 271-306
-
-
Godunov, S.K.1
-
17
-
-
0000480805
-
A direct Eulerian MUSCL scheme for gas dynamics
-
17 P. Colella, A direct Eulerian MUSCL scheme for gas dynamics, SIAM J Sci Stat Comput 6 (1985), 104–117.
-
(1985)
SIAM J Sci Stat Comput
, vol.6
, pp. 104-117
-
-
Colella, P.1
-
18
-
-
0000296272
-
A geometric approach to high resolution TVD schemes
-
18 J. B. Goodman and R. J. LeVeque, A geometric approach to high resolution TVD schemes, SIAM J Numer Anal 25 (1988), 268–284.
-
(1988)
SIAM J Numer Anal
, vol.25
, pp. 268-284
-
-
Goodman, J.B.1
LeVeque, R.J.2
-
19
-
-
34249988639
-
Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme
-
19 B. van Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme, J Comput Phys 14 (1974), 361–370.
-
(1974)
J Comput Phys
, vol.14
, pp. 361-370
-
-
van Leer, B.1
-
20
-
-
0002187037
-
On the relation between the upwind‐differencing schemes of Godunov, Engquist‐Osher, and Roe
-
20 B. van Leer, On the relation between the upwind‐differencing schemes of Godunov, Engquist‐Osher, and Roe, SIAM J Sci Stat Comput 5 (1984), 1–20.
-
(1984)
SIAM J Sci Stat Comput
, vol.5
, pp. 1-20
-
-
van Leer, B.1
-
21
-
-
33749725182
-
Uniformly high order accurate essentially nonoscillatory schemes, III
-
21 A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high order accurate essentially nonoscillatory schemes, III, J Comput Phys 71 (1987), 231–241.
-
(1987)
J Comput Phys
, vol.71
, pp. 231-241
-
-
Harten, A.1
Engquist, B.2
Osher, S.3
Chakravarthy, S.4
-
22
-
-
0023329384
-
Uniformly high‐order accurate non‐oscillatory schemes, I
-
22 A. Harten and S. Osher, Uniformly high‐order accurate non‐oscillatory schemes, I, SIAM J Numer Anal 24 (1987), 279–309.
-
(1987)
SIAM J Numer Anal
, vol.24
, pp. 279-309
-
-
Harten, A.1
Osher, S.2
-
23
-
-
0000592595
-
Weighted essentially nonoscillatory schemes
-
23 X.‐D. Liu, S. Osher, and T. Chan, Weighted essentially nonoscillatory schemes, J Comput Phys 115 (1994), 200–212.
-
(1994)
J Comput Phys
, vol.115
, pp. 200-212
-
-
Liu, X.‐D.1
Osher, S.2
Chan, T.3
-
24
-
-
0000034725
-
Essentially non‐oscillatory (ENO) and weighted essentially non‐oscillatory (WENO) schemes for hyperbolic conservation laws, in:
-
24 C.‐W. Shu, Essentially non‐oscillatory (ENO) and weighted essentially non‐oscillatory (WENO) schemes for hyperbolic conservation laws. A. Quarteroni, editor, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, New York, Springer‐Verlag, Vol 1697, 1997, pp 325–432.
-
(1997)
, vol.1697
, pp. 325-432
-
-
Shu, C.‐W.1
|