메뉴 건너뛰기




Volumn 81, Issue 13, 2003, Pages 1329-1341

Two-axis flexure hinges with axially-collocated and symmetric notches

Author keywords

Collocation; Compliant mechanisms; Flexure hinge; Parabolic; Two axis

Indexed keywords

DEFORMATION; ELASTICITY; FINITE ELEMENT METHOD; STRESS ANALYSIS;

EID: 0037401908     PISSN: 00457949     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0045-7949(03)00056-7     Document Type: Article
Times cited : (98)

References (15)
  • 1
    • 0000112064 scopus 로고
    • How to design flexure hinges
    • Paros J.M., Weisbord L. How to design flexure hinges. Mach. Des. 1965;151-156.
    • (1965) Mach. Des. , pp. 151-156
    • Paros, J.M.1    Weisbord, L.2
  • 4
    • 0036567350 scopus 로고    scopus 로고
    • Design of symmetric conic-section flexure hinges based on closed-form compliance equations
    • Lobontiu N., Paine J.S.N., Garcia E., Goldfarb M. Design of symmetric conic-section flexure hinges based on closed-form compliance equations. Mech. Mach. Theory. 37(5):2002;477-498.
    • (2002) Mech. Mach. Theory , vol.37 , Issue.5 , pp. 477-498
    • Lobontiu, N.1    Paine, J.S.N.2    Garcia, E.3    Goldfarb, M.4
  • 8
    • 0030193744 scopus 로고    scopus 로고
    • Flexure hinges for piezo-actuator displacement amplifiers: Flexibility, accuracy and stress considerations
    • Xu W., King T.G. Flexure hinges for piezo-actuator displacement amplifiers: flexibility, accuracy and stress considerations. Prec. Eng. 19(1):1996;4-10.
    • (1996) Prec. Eng. , vol.19 , Issue.1 , pp. 4-10
    • Xu, W.1    King, T.G.2
  • 9
    • 0001494660 scopus 로고    scopus 로고
    • A finite-element-based method to determine the spatial stiffness properties of a notch hinge
    • Zhang S., Fasse E.D. A finite-element-based method to determine the spatial stiffness properties of a notch hinge. ASME J. Mech. Des. 123(1):2001;141-147.
    • (2001) ASME J. Mech. Des. , vol.123 , Issue.1 , pp. 141-147
    • Zhang, S.1    Fasse, E.D.2
  • 11
    • 0036465601 scopus 로고    scopus 로고
    • 3D-beam element with continuous variation of the cross-sectional area
    • Murn J., Kutis V. 3D-beam element with continuous variation of the cross-sectional area. Comput. Struct. 80(3-4):2002;329-338.
    • (2002) Comput. Struct. , vol.80 , Issue.3-4 , pp. 329-338
    • Murn, J.1    Kutis, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.