메뉴 건너뛰기




Volumn 23, Issue 2, 2003, Pages 34-45

Estimation via Markov Chian Monte Carlo

Author keywords

[No Author keywords available]

Indexed keywords

MARKOV PROCESSES; MATHEMATICAL MODELS; MONTE CARLO METHODS; NORMAL DISTRIBUTION; PARAMETER ESTIMATION; SAMPLING;

EID: 0037389378     PISSN: 1066033X     EISSN: None     Source Type: Journal    
DOI: 10.1109/MCS.2003.1188770     Document Type: Article
Times cited : (158)

References (35)
  • 2
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W.K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika, vol. 57, pp. 97-109, 1970.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 3
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 721-741, 1984.
    • (1984) IEEE Trans. Pattern Anal. Machine Intell. , vol.PAMI-6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 4
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • M. Tanner and W. Wong, “The calculation of posterior distributions by data augmentation (with discussion),” J. Amer. Statist. Assoc., vol. 82, pp. 528-550, 1987.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.1    Wong, W.2
  • 5
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • A.E. Gelfand and A.F.M. Smith, “Sampling-based approaches to calculating marginal densities,” J. Amer. Statist. Assoc., vol. 85, pp. 399-409, 1990.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 399-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 6
    • 0141477361 scopus 로고
    • Bayesian computation and stochastic systems
    • J. Besag, P. Green, D. Higdon, and K. Mengersen, “Bayesian computation and stochastic systems,” Statist. Sci., vol. 10, pp. 3-66, 1995.
    • (1995) Statist. Sci. , vol.10 , pp. 3-66
    • Besag, J.1    Green, P.2    Higdon, D.3    Mengersen, K.4
  • 7
    • 0442325012 scopus 로고    scopus 로고
    • Markov chain Monte Carlo: 10 years and still running!
    • O. Cappé and C.P. Robert, “Markov chain Monte Carlo: 10 years and still running!,” J. Amer. Statist. Assoc., vol. 95, pp. 1282-1286, 2000.
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 1282-1286
    • Cappé, O.1    Robert, C.P.2
  • 9
    • 84972543992 scopus 로고
    • Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems
    • M. Evans and T. Swartz, “Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems,” Statist. Sci., vol. 10, pp. 254-272, 1995.
    • (1995) Statist. Sci. , vol.10 , pp. 254-272
    • Evans, M.1    Swartz, T.2
  • 14
    • 0033740817 scopus 로고    scopus 로고
    • Stochastic sampling algorithms for state estimation in jump Markov linear systems
    • A. Doucet, A. Logothetis, and V. Krishnamurthy, “Stochastic sampling algorithms for state estimation in jump Markov linear systems,” IEEE Trans. Automat. Contr., vol. 45, no. 2, pp. 188-202, 2000.
    • (2000) IEEE Trans. Automat. Contr. , vol.45 , Issue.2 , pp. 188-202
    • Doucet, A.1    Logothetis, A.2    Krishnamurthy, V.3
  • 17
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, pp. 671-680, 1983.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Vecchi, M.P.2
  • 18
    • 0035528756 scopus 로고    scopus 로고
    • Convergence of simulated annealing using Foster-Lyapunov criteria
    • C. Andrieu, L. Breyer, and A. Doucet, “Convergence of simulated annealing using Foster-Lyapunov criteria,” J. Appl. Prob., vol. 38, no. 4, pp. 975-994, 2001.
    • (2001) J. Appl. Prob. , vol.38 , Issue.4 , pp. 975-994
    • Andrieu, C.1    Breyer, L.2    Doucet, A.3
  • 20
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • S. Chib and E. Greenberg, “Understanding the Metropolis-Hastings algorithm,” Amer. Statist., vol. 49, pp. 327-335, 1995.
    • (1995) Amer. Statist. , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 21
    • 0032333313 scopus 로고    scopus 로고
    • Adaptive Markov chain Monte Carlo through regeneration
    • W.R. Gilks, G.O. Roberts, and S.K. Sahu, “Adaptive Markov chain Monte Carlo through regeneration,” J. Amer. Statist. Assoc., vol. 93, pp. 1045-1054, 1998.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1045-1054
    • Gilks, W.R.1    Sahu, S.K.2
  • 22
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various Metropolis-Hastings algorithms
    • G.O. Roberts and J.S. Rosenthal, “Optimal scaling for various Metropolis-Hastings algorithms,” Statist. Sci., vol. 16, no. 4, pp. 351-367, 2001.
    • (2001) Statist. Sci. , vol.16 , Issue.4 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 23
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • G. Casella and E.I. George, “Explaining the Gibbs sampler,” Amer. Statist., vol. 46, pp. 167-174, 1992.
    • (1992) Amer. Statist. , vol.46 , pp. 167-174
    • Casella, G.1    George, E.I.2
  • 25
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • P.J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika, vol. 82, no. 4, pp. 711-732, 1995.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 711-732
    • Green, P.J.1
  • 26
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs sampler
    • S. Chib, “Marginal likelihood from the Gibbs sampler,” J. Amer. Statist. Assoc., vol. 90, pp. 1313-1321, 1995.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1313-1321
    • Chib, S.1
  • 27
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multistage, nonlinear filtering
    • J.E. Handschin and D.Q. Mayne, “Monte Carlo techniques to estimate the conditional expectation in multistage, nonlinear filtering,” Int. J. Contr., vol. 9, pp. 547-559, 1969.
    • (1969) Int. J. Contr. , vol.9 , pp. 547-559
    • Handschin, J.E.1    Mayne, D.Q.2
  • 28
    • 84950445183 scopus 로고
    • A Monte Carlo approach to nonnormal and nonlinear state-space modeling
    • B.P. Carlin, N.G. Polson, and D.S. Stoffer, “A Monte Carlo approach to nonnormal and nonlinear state-space modeling,” J. Amer. Statist. Assoc., vol. 87, pp. 493-500, 1992.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 493-500
    • Carlin, B.P.1    Stoffer, D.S.2
  • 29
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • pt. F,.
    • N.J. Gordon, D.J. Salmond, and A.F.M. Smith, “Novel approach to nonlinear/non-Gaussian Bayesian state estimation,” Proc. Inst. Elec. Eng., vol. 140, pt. F, 1993, pp. 107-113.
    • (1993) Proc. Inst. Elec. Eng. , vol.140 , pp. 107-113
    • Gordon, N.J.1    Smith, A.F.M.2
  • 30
    • 0000193853 scopus 로고
    • On Gibbs sampling for state-space models
    • C.K. Carter and R. Kohn, “On Gibbs sampling for state-space models,” Biometrika, vol. 81, pp. 541-553, 1994.
    • (1994) Biometrika , vol.81 , pp. 541-553
    • Carter, C.K.1    Kohn, R.2
  • 31
    • 0035964376 scopus 로고    scopus 로고
    • Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling
    • J. Geweke and H. Tanizaki, “Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling,” Comput. Statisti. Data Anal., vol. 37, pp. 151-170, 2001.
    • (2001) Comput. Statisti. Data Anal. , vol.37 , pp. 151-170
    • Geweke, J.1    Tanizaki, H.2
  • 32
    • 0029393003 scopus 로고
    • The Kantorovich inequality for error analysis of the Kalman filter with unknown noise distributions
    • J.C. Spall, “The Kantorovich inequality for error analysis of the Kalman filter with unknown noise distributions,” Automatica, vol. 31, pp. 1513-1517, 1995.
    • (1995) Automatica , vol.31 , pp. 1513-1517
    • Spall, J.C.1
  • 33
    • 0030662729 scopus 로고    scopus 로고
    • Use of the Kalman filter for inference in state-space models with unknown noise distributions
    • Albuquerque, NM,.
    • J.L. Maryak, J.C. Spall, and B.D. Heydon, “Use of the Kalman filter for inference in state-space models with unknown noise distributions,” in Proc. American Control Conf., Albuquerque, NM, 1997, pp. 2127-2132.
    • (1997) Proc. American Control Conf. , pp. 2127-2132
    • Maryak, J.L.1    Heydon, B.D.2
  • 34
    • 0025432123 scopus 로고
    • Least-informative Bayesian prior distributions for finite samples based on information theory
    • J.C. Spall and S.D. Hill, “Least-informative Bayesian prior distributions for finite samples based on information theory,” IEEE Trans. Automatic Contr., vol. 35, pp. 580-583, 1990.
    • (1990) IEEE Trans. Automatic Contr. , vol.35 , pp. 580-583
    • Spall, J.C.1    Hill, S.D.2
  • 35
    • 0015385037 scopus 로고
    • Nonlinear Bayesian estimation using Gaussian sum approximations
    • D.L. Alspach and H.W. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum approximations,” IEEE Trans. Automat. Contr., vol. AC-17, pp. 439-448, 1972.
    • (1972) IEEE Trans. Automat. Contr. , vol.AC-17 , pp. 439-448
    • Alspach, D.L.1    Sorenson, H.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.