-
2
-
-
26144433204
-
-
ABRAHAMS E. et al., Phys. Rev. Lett., 42 (1979) 673; WEGNER F., Z. Phys. B, 35 (1979) 207.
-
(1979)
Phys. Rev. Lett.
, vol.42
, pp. 673
-
-
Abrahams, E.1
-
3
-
-
0001328019
-
-
ABRAHAMS E. et al., Phys. Rev. Lett., 42 (1979) 673; WEGNER F., Z. Phys. B, 35 (1979) 207.
-
(1979)
Z. Phys. B
, vol.35
, pp. 207
-
-
Wegner, F.1
-
4
-
-
0000704705
-
-
FINKEL'SHTEIN A. M., Zh. Eksp. Teor. Fiz., 84 (1983) 168. For a review see BELITZ D. and KIRKPATRICK T. R., Rev. Mod. Phys., 66 (1994) 261.
-
(1983)
Zh. Eksp. Teor. Fiz.
, vol.84
, pp. 168
-
-
Finkel'Shtein, A.M.1
-
5
-
-
12044250476
-
-
FINKEL'SHTEIN A. M., Zh. Eksp. Teor. Fiz., 84 (1983) 168. For a review see BELITZ D. and KIRKPATRICK T. R., Rev. Mod. Phys., 66 (1994) 261.
-
(1994)
Rev. Mod. Phys.
, vol.66
, pp. 261
-
-
Belitz, D.1
Kirkpatrick, T.R.2
-
11
-
-
4244077465
-
-
DOBROSAVLJEVIĆ V. and KOTLIAR G., Phys. Rev. Lett., 71 (1993) 3218; 78 (1997) 3943; Phys. Rev. B, 50 (1994) 1430.
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 3943
-
-
-
12
-
-
4243256623
-
-
DOBROSAVLJEVIĆ V. and KOTLIAR G., Phys. Rev. Lett., 71 (1993) 3218; 78 (1997) 3943; Phys. Rev. B, 50 (1994) 1430.
-
(1994)
Phys. Rev. B
, vol.50
, pp. 1430
-
-
-
13
-
-
0013010695
-
-
note
-
Ours is a diametrically opposite, but complementary approach to that of the weak-localization theories[4], which investigate the stability of the metallic phase with respect to weak impurity scattering. The self-consistent theory of localization of Vollhardt and Wölfle[10] has a similar character, since it essentially represents a resummation of the most singular contributions at weak disorder near two dimensions. On the other hand, some recent experiments[5] indicate[11] that the observed quantum critical behavior may be dominated by the physics of the insulator, thus favoring the local picture.
-
-
-
-
21
-
-
0012951091
-
-
note
-
o ≈ 4[18], and ν ≈ 1.58[16], so that β ≈ μ, ≈ 1.58. The result β= μ= l + O (ε) is also found within the 2 + ε approach[12].
-
-
-
-
23
-
-
0013003858
-
-
note
-
Within a "mean-field"-like formulation such as ours, we do not expect the different symmetry classes (with respect to time-reversal or spin-rotation invariance) to result in different critical exponents. Although it is well known that these differences play a crucial role in the weak-localization regime[4], we note that a recent numerical work[20] finds very similar critical behaviors in three dimensions in all cases.
-
-
-
-
26
-
-
0012902881
-
-
note
-
c, where the conductivity assumes the Drude-Boltzmann form.
-
-
-
|