-
1
-
-
0004083047
-
Representation dimension of Artin algebras
-
[A], Queen Mary College, London
-
[A] M. Auslander: Representation dimension of Artin algebras. Lecture notes, Queen Mary College, London, 1971.
-
(1971)
Lecture Notes
-
-
Auslander, M.1
-
2
-
-
0003310131
-
Representation theory of Artin algebras
-
[ARS], Cambridge University Press, Cambridge. MR 96c:l6015, MR98e:16011
-
[ARS] M. Auslander, I. Reiten, S. O. Smale: Representation theory of Artin algebras. Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995. MR 96c:l6015, MR98e:16011
-
(1995)
Cambridge Studies in Advanced Mathematics
, vol.36
-
-
Auslander, M.1
Reiten, I.2
Smale, S.O.3
-
3
-
-
84942964111
-
Finite-dimensional algebras and highest weight categories
-
[CPS]. MR 90d:18005
-
[CPS] E. Cline, B. Parshall, L. Scott: Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391 (1988), 85-99. MR 90d:18005
-
(1988)
J. Reine Angew. Math.
, vol.391
, pp. 85-99
-
-
Cline, E.1
Parshall, B.2
Scott, L.3
-
4
-
-
84972553715
-
Quasi-hereditary algebras
-
[DR1]. MR90e:16023
-
[DR1] V. Dlab, C. M. Ringel: Quasi-hereditary algebras. Illinois J. Math. 33 (1989), no. 2, 280-291. MR90e:16023
-
(1989)
Illinois J. Math.
, vol.33
, Issue.2
, pp. 280-291
-
-
Dlab, V.1
Ringel, C.M.2
-
5
-
-
84952420686
-
Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring
-
[DR2]. MR 89m:16033
-
[DR2] V. Dlab, C. M. Ringel: Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring. Proc. Amer. Math. Soc. 107 (1989), no. 1, 1-5. MR 89m:16033
-
(1989)
Proc. Amer. Math. Soc.
, vol.107
, Issue.1
, pp. 1-5
-
-
Dlab, V.1
Ringel, C.M.2
-
6
-
-
0003318799
-
Trivial extensions of abelian categories
-
[FGR], Springer-Verlag, Berlin-New York. MR 52:10810
-
[FGR] R. M. Fossum, P. Griffith, I. Reiten: Trivial extensions of abelian categories. Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin-New York, 1975. MR 52:10810
-
(1975)
Lecture Notes in Mathematics
, vol.456
-
-
Fossum, R.M.1
Griffith, P.2
Reiten, I.3
-
7
-
-
0012893925
-
A course in homological algebra
-
[HS]. Springer-Verlag, New York, MR 07k:18001
-
[HS] P. J. Hilton, U. Stammbach: A course in homological algebra. Graduate Texts in Mathematics, 4. Springer-Verlag, New York, 1997, xii+364 pp. MR 07k:18001
-
(1997)
Graduate Texts in Mathematics
, vol.4
-
-
Hilton, P.J.1
Stammbach, U.2
-
8
-
-
27744585924
-
τ-categories II: Nakayama pairs and rejective subcategories
-
[I1]
-
[I1] O. Iyama: τ-categories II: Nakayama pairs and rejective subcategories, to appear in Algebras and Representation theory.
-
Algebras and Representation theory
-
-
Iyama, O.1
-
9
-
-
27744561985
-
τ-categories III: Auslander orders and Auslander-Reiten quivers
-
[I2]
-
[I2] O. Iyama: τ-categories III: Auslander orders and Auslander-Reiten quivers, to appear in Algebras and Representation theory.
-
Algebras and Representation theory
-
-
Iyama, O.1
-
10
-
-
85064308631
-
A proof of Solomon's second conjecture on local zeta functions of orders
-
[I3]
-
[I3] O. Iyama: A proof of Solomon's second conjecture on local zeta functions of orders, to appear in J. Algebra.
-
J. Algebra
-
-
Iyama, O.1
-
12
-
-
0003211856
-
Quasi-Frobenius rings and generalizations
-
[T], Springer-Verlag, Berlin-New York. MR 50:2233
-
[T] H. Tachikawa: Quasi-Frobenius rings and generalizations. Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin-New York, 1973. MR 50:2233
-
(1973)
Lecture Notes in Mathematics
, vol.351
-
-
Tachikawa, H.1
-
13
-
-
0034164825
-
On the representation dimension of finite dimensional algebras
-
[X1]. MR 2001d:16027
-
[X1] C. C. Xi: On the representation dimension of finite dimensional algebras. J. Algebra 226 (2000), no. 1, 332-346. MR 2001d:16027
-
(2000)
J. Algebra
, vol.226
, Issue.1
, pp. 332-346
-
-
Xi, C.C.1
-
14
-
-
0037173153
-
Representation dimension and quasi-hereditary algebras
-
[X2]
-
[X2] C. C. Xi: Representation dimension and quasi-hereditary algebras, to appear in Adv. Math.
-
Adv. Math.
-
-
Xi, C.C.1
|