-
1
-
-
0031008221
-
Basic mechanisms of transcript elongation and its regulation
-
Uptain S.M., Kane C.M., Chamberlin M.J. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66:1997;117-172.
-
(1997)
Annu. Rev. Biochem.
, vol.66
, pp. 117-172
-
-
Uptain, S.M.1
Kane, C.M.2
Chamberlin, M.J.3
-
2
-
-
0036468364
-
Multisubunit RNA polymerases
-
Cramer P. Multisubunit RNA polymerases. Curr. Opin. Struct. Biol. 12:2002;89-97.
-
(2002)
Curr. Opin. Struct. Biol.
, vol.12
, pp. 89-97
-
-
Cramer, P.1
-
3
-
-
0035827346
-
Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution
-
Cramer P., Bushnell D.A., Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science. 292:2001;1863-1876. • The first atomic resolution structure of RNAPII. This structure reveals many of the essential features of RNAPII and sets the stage for the more rapid elucidation of future RNAPII structures.
-
(2001)
Science
, vol.292
, pp. 1863-1876
-
-
Cramer, P.1
Bushnell, D.A.2
Kornberg, R.D.3
-
4
-
-
0035827332
-
Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 Å resolution
-
Gnatt A.L., Cramer P., Fu J., Bushnell D.A., Kornberg R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science. 292:2001;1876-1882. • In a technical tour de force, Kornberg and colleagues report a 3.3 Å resolution crystal structure of an RNA-DNA-RNAPII elongation complex. This provides the first detailed view of RNAPII caught in the act of elongation and enables the development and testing of specific hypotheses of the mechanisms underlying transcript elongation.
-
(2001)
Science
, vol.292
, pp. 1876-1882
-
-
Gnatt, A.L.1
Cramer, P.2
Fu, J.3
Bushnell, D.A.4
Kornberg, R.D.5
-
5
-
-
0037022279
-
Structural basis of transcription: Alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution
-
••], this structural data provides support for the model that allosteric changes in the conformation of the bridge helix are important for translocation of RNAPs down the template DNA.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 1218-1222
-
-
Bushnell, D.A.1
Cramer, P.2
Kornberg, R.D.3
-
6
-
-
0033578829
-
Electron crystal structure of an RNA polymerase II transcription elongation complex
-
Poglitsch C.L., Meredith G.D., Gnatt A.L., Jensen G.J., Chang W.H., Fu J., Kornberg R.D. Electron crystal structure of an RNA polymerase II transcription elongation complex. Cell. 98:1999;791-798.
-
(1999)
Cell
, vol.98
, pp. 791-798
-
-
Poglitsch, C.L.1
Meredith, G.D.2
Gnatt, A.L.3
Jensen, G.J.4
Chang, W.H.5
Fu, J.6
Kornberg, R.D.7
-
7
-
-
0033578701
-
Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution
-
Zhang G., Campbell E.A., Minakhin L., Richter C., Severinov K., Darst S.A. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell. 98:1999;811-824.
-
(1999)
Cell
, vol.98
, pp. 811-824
-
-
Zhang, G.1
Campbell, E.A.2
Minakhin, L.3
Richter, C.4
Severinov, K.5
Darst, S.A.6
-
8
-
-
0036753435
-
Swing-gate model of nucleotide entry into the RNA polymerase active center
-
Epshtein V., Mustaev A., Markovtsov V., Bereshchenko O., Nikiforov V., Goldfarb A. Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol. Cell. 10:2002;623-634. • Using crosslinkers fixed to the 3′ end of the nascent RNA, this study probes the structure of the bacterial RNAP active site in initiation and elongation complexes. The results show that the bridge helix can adopt different conformations in the same ternary complex. These findings provide experimental support for the idea that allosteric changes in the bridge helix accompany translocation of RNAPs down the template DNA.
-
(2002)
Mol. Cell
, vol.10
, pp. 623-634
-
-
Epshtein, V.1
Mustaev, A.2
Markovtsov, V.3
Bereshchenko, O.4
Nikiforov, V.5
Goldfarb, A.6
-
9
-
-
0036690340
-
Structure of yeast RNA polymerase II in solution: Implications for enzyme regulation and interaction with promoter DNA
-
••], they observe several new features of RNAPII, including what appears to be the Rpb4/Rpb7 module missing from the structure of the 10-subunit form of RNAPII crystallized by the Kornberg group
-
••], they observe several new features of RNAPII, including what appears to be the Rpb4/Rpb7 module missing from the structure of the 10-subunit form of RNAPII crystallized by the Kornberg group.
-
(2002)
Structure (Camb.)
, vol.10
, pp. 1117-1125
-
-
Craighead, J.L.1
Chang, W.H.2
Asturias, F.J.3
-
10
-
-
0035930324
-
Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex
-
Todone F., Brick P., Werner F., Weinzierl R.O., Onesti S. Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Mol. Cell. 8:2001;1137-1143.
-
(2001)
Mol. Cell
, vol.8
, pp. 1137-1143
-
-
Todone, F.1
Brick, P.2
Werner, F.3
Weinzierl, R.O.4
Onesti, S.5
-
11
-
-
0035971082
-
Dissociable Rpb4-Rpb7 subassembly of RNA polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation
-
Orlicky S.M., Tran P.T., Sayre M.H., Edwards A.M. Dissociable Rpb4-Rpb7 subassembly of RNA polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J. Biol. Chem. 276:2001;10097-10102.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 10097-10102
-
-
Orlicky, S.M.1
Tran, P.T.2
Sayre, M.H.3
Edwards, A.M.4
-
12
-
-
0037073047
-
Promoter escape by RNA polymerase II
-
Dvir A. Promoter escape by RNA polymerase II. Biochim. Biophys. Acta. 1577:2002;208-223.
-
(2002)
Biochim. Biophys. Acta.
, vol.1577
, pp. 208-223
-
-
Dvir, A.1
-
13
-
-
0034903279
-
Promoter clearance by RNA polymerase II is an extended, multistep process strongly affected by sequence
-
Pal M., McKean D., Luse D.S. Promoter clearance by RNA polymerase II is an extended, multistep process strongly affected by sequence. Mol. Cell Biol. 21:2001;5815-5825.
-
(2001)
Mol. Cell Biol.
, vol.21
, pp. 5815-5825
-
-
Pal, M.1
McKean, D.2
Luse, D.S.3
-
14
-
-
0037031891
-
RNA polymerase II transcription complexes may become arrested if the nascent RNA is shortened to less than 50 nucleotides
-
Ujvari A., Pal M., Luse D.S. RNA polymerase II transcription complexes may become arrested if the nascent RNA is shortened to less than 50 nucleotides. J. Biol. Chem. 277:2002;32527-32537. • Previously, RNAPII elongation complexes were shown to be transiently destabilized when the nascent transcript was ∼20 nucleotides in length [13]. In this study, when the transcripts of elongation complexes far from promoters are shortened to 20-50 nucleotides, the elongation complex was destabilized. A similar instability is observed when these elongation complexes are treated with oligonucleotides that can hybridize to RNA ∼20-50 nucleotides downstream of the 3′ end of the RNA. The authors suggest that RNA may interact with RNAPII after exiting the active site and thereby stabilize the elongation complex.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 32527-32537
-
-
Ujvari, A.1
Pal, M.2
Luse, D.S.3
-
15
-
-
0036545816
-
RNA polymerase II carboxy-terminal domain kinases: Emerging clues to their function
-
Prelich G. RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. Eukaryot Cell. 1:2002;153-162.
-
(2002)
Eukaryot Cell
, vol.1
, pp. 153-162
-
-
Prelich, G.1
-
16
-
-
0037197839
-
Evolution of the RNA polymerase II C-terminal domain
-
Stiller J.W., Hall B.D. Evolution of the RNA polymerase II C-terminal domain. Proc. Natl. Acad. Sci. U.S.A. 99:2002;6091-6096.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 6091-6096
-
-
Stiller, J.W.1
Hall, B.D.2
-
17
-
-
0037041395
-
An extensive network of coupling among gene expression machines
-
Maniatis T., Reed R. An extensive network of coupling among gene expression machines. Nature. 416:2002;499-506.
-
(2002)
Nature
, vol.416
, pp. 499-506
-
-
Maniatis, T.1
Reed, R.2
-
18
-
-
0034637472
-
Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription
-
Meininghaus M., Chapman R.D., Horndasch M., Eick D. Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription. J. Biol. Chem. 275:2000;24375-24382.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 24375-24382
-
-
Meininghaus, M.1
Chapman, R.D.2
Horndasch, M.3
Eick, D.4
-
19
-
-
0035924345
-
Stimulatory effect of splicing factors on transcriptional elongation
-
Fong Y.W., Zhou Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature. 414:2001;929-933. • This paper shows that Tat-SF1, an elongation factor important for HIV Tat function, associates with splicing factors and stimulates transcription and splicing in vitro. Consistent with earlier in vivo studies (reviewed in [17]), the authors find that the inclusion of splicing signals in a transcription template stimulates transcription, presumably because of an increase in the recruitment of processing factors that also influence elongation.
-
(2001)
Nature
, vol.414
, pp. 929-933
-
-
Fong, Y.W.1
Zhou, Q.2
-
20
-
-
0033566042
-
Transcription elongation factor hSPT5 stimulates mRNA capping
-
Wen Y., Shatkin A.J. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev. 13:1999;1774-1779.
-
(1999)
Genes Dev.
, vol.13
, pp. 1774-1779
-
-
Wen, Y.1
Shatkin, A.J.2
-
21
-
-
0037205456
-
Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5
-
Pei Y., Shuman S. Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5. J. Biol. Chem. 277:2002;19639-19648.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 19639-19648
-
-
Pei, Y.1
Shuman, S.2
-
22
-
-
0037313160
-
The Spt4-Spt5 complex associates with multiple protein complexes involved in transcription elongation and pre-mRNA processing
-
•].
-
(2003)
Mol. Cell Biol.
, vol.23
, pp. 1368-1378
-
-
Lindstrom, D.L.1
Squazzo, S.L.2
Muster, N.3
Burckin, T.A.4
Wachter, K.C.5
Emigh, C.A.6
McCleery, J.A.7
Yates, J.R.8
Hartzog, G.A.9
-
23
-
-
0036275982
-
Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation
-
Kim Y.K., Bourgeois C.F., Isel C., Churcher M.J., Karn J. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Mol. Cell Biol. 22:2002;4622-4637. • Kim and colleagues isolate early transcription elongation complexes in which they had stalled RNAPII. These stalled complexes are dephosphorylated and then allowed to resume elongation. Efficient elongation depends upon a CTD kinase, P-TEFb, and coincides with re-phosphorylation of the CTD. Furthermore, this stimulation does not depend upon the presence of Spt5, another P-TEFb substrate, suggesting that CTD phosphorylation is required for efficient elongation across the HIV genome.
-
(2002)
Mol. Cell Biol.
, vol.22
, pp. 4622-4637
-
-
Kim, Y.K.1
Bourgeois, C.F.2
Isel, C.3
Churcher, M.J.4
Karn, J.5
-
24
-
-
0025209825
-
The heptad repeat in the largest subunit of RNA polymerase II binds by intercalating into DNA
-
Suzuki M. The heptad repeat in the largest subunit of RNA polymerase II binds by intercalating into DNA. Nature. 344:1990;562-565.
-
(1990)
Nature
, vol.344
, pp. 562-565
-
-
Suzuki, M.1
-
25
-
-
0034307008
-
Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription
-
Komarnitsky P., Cho E.J., Buratowski S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14:2000;2452-2460.
-
(2000)
Genes Dev.
, vol.14
, pp. 2452-2460
-
-
Komarnitsky, P.1
Cho, E.J.2
Buratowski, S.3
-
26
-
-
0037102566
-
CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo
-
Shim E.Y., Walker A.K., Shi Y., Blackwell T.K. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev. 16:2002;2135-2146. • RNAi treatment of C. elegans is used to show that P-TEFb is required for serine 2 phosphorylation of the RNA polymerase II CTD and for the transcription of several different genes. Furthermore, the transcription of heat-shock, but not other, genes can be restored by the additional RNAi-mediated depletion of DSIF subunits Spt4 and Spt5. This suggests that DSIF negatively regulates heat shock gene transcription and that P-TEFb can overcome this inhibition.
-
(2002)
Genes Dev.
, vol.16
, pp. 2135-2146
-
-
Shim, E.Y.1
Walker, A.K.2
Shi, Y.3
Blackwell, T.K.4
-
27
-
-
0034972804
-
Phosphorylation of the RNA polymerase II carboxy-terminal domain by the Bur1 cyclin-dependent kinase
-
Murray S., Udupa R., Yao S., Hartzog G., Prelich G. Phosphorylation of the RNA polymerase II carboxy-terminal domain by the Bur1 cyclin-dependent kinase. Mol. Cell Biol. 21:2001;4089-4096.
-
(2001)
Mol. Cell Biol.
, vol.21
, pp. 4089-4096
-
-
Murray, S.1
Udupa, R.2
Yao, S.3
Hartzog, G.4
Prelich, G.5
-
28
-
-
0035893314
-
Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain
-
Cho E.J., Kobor M.S., Kim M., Greenblatt J., Buratowski S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15:2001;3319-3329.
-
(2001)
Genes Dev.
, vol.15
, pp. 3319-3329
-
-
Cho, E.J.1
Kobor, M.S.2
Kim, M.3
Greenblatt, J.4
Buratowski, S.5
-
29
-
-
0036150085
-
Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences
-
Bourgeois C.F., Kim Y.K., Churcher M.J., West M.J., Karn J. Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences. Mol. Cell Biol. 22:2002;1079-1093. • In this paper, in vitro transcription reactions are performed with extracts that have been immunodepleted of the Spt5 subunit of DSIF. The authors present evidence that Spt5 can promote elongation by suppressing the premature release of transcripts at internal transcription termination sequences and also by reducing polymerase pausing at transcription arrest sites.
-
(2002)
Mol. Cell Biol.
, vol.22
, pp. 1079-1093
-
-
Bourgeois, C.F.1
Kim, Y.K.2
Churcher, M.J.3
West, M.J.4
Karn, J.5
-
30
-
-
0035918157
-
DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation
-
Ping Y.H., Rana T.M. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J. Biol. Chem. 276:2001;12951-12958.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 12951-12958
-
-
Ping, Y.H.1
Rana, T.M.2
-
31
-
-
0034667805
-
Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster
-
Kaplan C.D., Morris J.R., Wu C., Winston F. Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 14:2000;2623-2634.
-
(2000)
Genes Dev.
, vol.14
, pp. 2623-2634
-
-
Kaplan, C.D.1
Morris, J.R.2
Wu, C.3
Winston, F.4
-
32
-
-
0034667949
-
High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: Roles in promoter proximal pausing and transcription elongation
-
Andrulis E.D., Guzman E., Doring P., Werner J., Lis J.T. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 14:2000;2635-2649.
-
(2000)
Genes Dev.
, vol.14
, pp. 2635-2649
-
-
Andrulis, E.D.1
Guzman, E.2
Doring, P.3
Werner, J.4
Lis, J.T.5
-
33
-
-
0036837685
-
FCP1, a phosphatase specific for the heptapeptide repeat of the largest subunit of RNA polymerase II, stimulates transcription elongation
-
Mandal S.S., Cho H., Kim S., Cabane K., Reinberg D. FCP1, a phosphatase specific for the heptapeptide repeat of the largest subunit of RNA polymerase II, stimulates transcription elongation. Mol. Cell Biol. 22:2002;7543-7552.
-
(2002)
Mol. Cell Biol.
, vol.22
, pp. 7543-7552
-
-
Mandal, S.S.1
Cho, H.2
Kim, S.3
Cabane, K.4
Reinberg, D.5
-
34
-
-
2242454131
-
TFIIF-associating carboxyl-terminal domain phosphatase dephosphorylates phosphoserines 2 and 5 of RNA polymerase II
-
Lin P.S., Dubois M.F., Dahmus M.E. TFIIF-associating carboxyl-terminal domain phosphatase dephosphorylates phosphoserines 2 and 5 of RNA polymerase II. J. Biol. Chem. 277:2002;45949-45956. • In contrast to earlier studies, this paper shows that Fcp1 can dephosphorylate both the serine 2 and serine 5 phosphorylated residues in the CTD; thus, it is possible that Fcp1 may carry out all CTD phosphatase activity.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 45949-45956
-
-
Lin, P.S.1
Dubois, M.F.2
Dahmus, M.E.3
-
35
-
-
0037077302
-
Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5
-
Hausmann S., Shuman S. Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5. J. Biol. Chem. 277:2002;21213-21220.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 21213-21220
-
-
Hausmann, S.1
Shuman, S.2
-
36
-
-
0037174844
-
Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II
-
Washington K., Ammosova T., Beullens M., Jerebtsova M., Kumar A., Bollen M., Nekhai S. Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II. J. Biol. Chem. 277:2002;40442-40448.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 40442-40448
-
-
Washington, K.1
Ammosova, T.2
Beullens, M.3
Jerebtsova, M.4
Kumar, A.5
Bollen, M.6
Nekhai, S.7
-
37
-
-
0035933769
-
Transcription factors TFIIF, ELL, and Elongin negatively regulate SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates
-
Elmendorf B.J., Shilatifard A., Yan Q., Conaway J.W., Conaway R.C. Transcription factors TFIIF, ELL, and Elongin negatively regulate SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates. J. Biol. Chem. 276:2001;23109-23114.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 23109-23114
-
-
Elmendorf, B.J.1
Shilatifard, A.2
Yan, Q.3
Conaway, J.W.4
Conaway, R.C.5
-
38
-
-
0036241663
-
Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo
-
Pokholok D.K., Hannett N.M., Young R.A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell. 9:2002;799-809.
-
(2002)
Mol. Cell
, vol.9
, pp. 799-809
-
-
Pokholok, D.K.1
Hannett, N.M.2
Young, R.A.3
-
39
-
-
0036787862
-
RNA polymerase II elongation factors of Saccharomyces cerevisiae: A targeted proteomics approach
-
•].
-
(2002)
Mol. Cell Biol.
, vol.22
, pp. 6979-6992
-
-
Krogan, N.J.1
Kim, M.2
Ahn, S.H.3
Zhong, G.4
Kobor, M.S.5
Cagney, G.6
Emili, A.7
Shilatifard, A.8
Buratowski, S.9
Greenblatt, J.F.10
-
40
-
-
0035503319
-
Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo
-
Gerber M., Ma J., Dean K., Eissenberg J.C., Shilatifard A. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo. EMBO J. 20:2001;6104-6114.
-
(2001)
EMBO J.
, vol.20
, pp. 6104-6114
-
-
Gerber, M.1
Ma, J.2
Dean, K.3
Eissenberg, J.C.4
Shilatifard, A.5
-
41
-
-
0035980015
-
RNA polymerase II Elongator holoenzyme is composed of two discrete subcomplexes
-
Winkler G.S., Petrakis T.G., Ethelberg S., Tokunaga M., Erdjument-Bromage H., Tempst P., Svejstrup J.Q. RNA polymerase II Elongator holoenzyme is composed of two discrete subcomplexes. J. Biol. Chem. 276:2001;32743-32749.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 32743-32749
-
-
Winkler, G.S.1
Petrakis, T.G.2
Ethelberg, S.3
Tokunaga, M.4
Erdjument-Bromage, H.5
Tempst, P.6
Svejstrup, J.Q.7
-
42
-
-
0035839471
-
A multiprotein complex that interacts with RNA polymerase II elongator
-
Li Y., Takagi Y., Jiang Y., Tokunaga M., Erdjument-Bromage H., Tempst P., Kornberg R.D. A multiprotein complex that interacts with RNA polymerase II elongator. J. Biol. Chem. 276:2001;29628-29631.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 29628-29631
-
-
Li, Y.1
Takagi, Y.2
Jiang, Y.3
Tokunaga, M.4
Erdjument-Bromage, H.5
Tempst, P.6
Kornberg, R.D.7
-
43
-
-
0035171624
-
Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae
-
Krogan N.J., Greenblatt J.F. Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol. Cell Biol. 21:2001;8203-8212.
-
(2001)
Mol. Cell Biol.
, vol.21
, pp. 8203-8212
-
-
Krogan, N.J.1
Greenblatt, J.F.2
-
44
-
-
0037169503
-
Purification and characterization of the human elongator complex
-
Hawkes N.A., Otero G., Winkler G.S., Marshall N., Dahmus M.E., Krappmann D., Scheidereit C., Thomas C.L., Schiavo G., Erdjument-Bromage H.et al. Purification and characterization of the human elongator complex. J. Biol. Chem. 277:2002;3047-3052.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 3047-3052
-
-
Hawkes, N.A.1
Otero, G.2
Winkler, G.S.3
Marshall, N.4
Dahmus, M.E.5
Krappmann, D.6
Scheidereit, C.7
Thomas, C.L.8
Schiavo, G.9
Erdjument-Bromage, H.10
-
46
-
-
0037022226
-
Human Elongator facilitates RNA polymerase II transcription through chromatin
-
Kim J.H., Lane W.S., Reinberg D. Human Elongator facilitates RNA polymerase II transcription through chromatin. Proc. Natl. Acad. Sci. U.S.A. 99:2002;1241-1246.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 1241-1246
-
-
Kim, J.H.1
Lane, W.S.2
Reinberg, D.3
-
47
-
-
0035901529
-
Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin
-
Frohloff F., Fichtner L., Jablonowski D., Breunig K.D., Schaffrath R. Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J. 20:2001;1993-2003.
-
(2001)
EMBO J.
, vol.20
, pp. 1993-2003
-
-
Frohloff, F.1
Fichtner, L.2
Jablonowski, D.3
Breunig, K.D.4
Schaffrath, R.5
-
48
-
-
0036809640
-
Transcriptional inhibition of genes with severe histone H3 hypoacetylation in the coding region
-
Kristjuhan A., Walker J., Suka N., Grunstein M., Roberts D., Cairns B.R., Svejstrup J.Q. Transcriptional inhibition of genes with severe histone H3 hypoacetylation in the coding region. Mol. Cell. 10:2002;1-20.
-
(2002)
Mol. Cell
, vol.10
, pp. 1-20
-
-
Kristjuhan, A.1
Walker, J.2
Suka, N.3
Grunstein, M.4
Roberts, D.5
Cairns, B.R.6
Svejstrup, J.Q.7
-
49
-
-
0037050004
-
Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
-
•]
-
•].
-
(2002)
Nature
, vol.415
, pp. 180-183
-
-
Ho, Y.1
Gruhler, A.2
Heilbut, A.3
Bader, G.D.4
Moore, L.5
Adams, S.L.6
Millar, A.7
Taylor, P.8
Bennett, K.9
Boutilier, K.10
-
50
-
-
0037050026
-
Functional organization of the yeast proteome by systematic analysis of protein complexes
-
•] for a potential wiring diagram of these associations.
-
(2002)
Nature
, vol.415
, pp. 141-147
-
-
Gavin, A.C.1
Bosche, M.2
Krause, R.3
Grandi, P.4
Marzioch, M.5
Bauer, A.6
Schultz, J.7
Rick, J.M.8
Michon, A.M.9
Cruciat, C.M.10
-
51
-
-
0036123253
-
Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex
-
Mueller C.L., Jaehning J.A. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol. Cell Biol. 22:2002;1971-1980.
-
(2002)
Mol. Cell Biol.
, vol.22
, pp. 1971-1980
-
-
Mueller, C.L.1
Jaehning, J.A.2
-
52
-
-
0037007217
-
The Paf1 complex physically and functionally associates with transcription elongation factors in vivo
-
Squazzo S.L., Costa P.J., Lindstrom D.L., Kumer K.E., Simic R., Jennings J.L., Link A.J., Arndt K.M., Hartzog G.A. The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. EMBO J. 21:2002;1764-1774.
-
(2002)
EMBO J.
, vol.21
, pp. 1764-1774
-
-
Squazzo, S.L.1
Costa, P.J.2
Lindstrom, D.L.3
Kumer, K.E.4
Simic, R.5
Jennings, J.L.6
Link, A.J.7
Arndt, K.M.8
Hartzog, G.A.9
-
53
-
-
0034657071
-
The chromo domain protein Chd1p from budding yeast is an ATP-dependent chromatin-modifying factor
-
Tran H.G., Steger D.J., Iyer V.R., Johnson A.D. The chromo domain protein Chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J. 19:2000;2323-2331.
-
(2000)
EMBO J.
, vol.19
, pp. 2323-2331
-
-
Tran, H.G.1
Steger, D.J.2
Iyer, V.R.3
Johnson, A.D.4
-
54
-
-
0032961892
-
CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin
-
Kelley D.E., Stokes D.G., Perry R.P. CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma. 108:1999;10-25.
-
(1999)
Chromosoma
, vol.108
, pp. 10-25
-
-
Kelley, D.E.1
Stokes, D.G.2
Perry, R.P.3
-
55
-
-
0029901861
-
CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes
-
Stokes D.G., Tartof K.D., Perry R.P. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. U.S.A. 93:1996;7137-7142.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 7137-7142
-
-
Stokes, D.G.1
Tartof, K.D.2
Perry, R.P.3
-
56
-
-
0035834647
-
A highly purified RNA polymerase II elongation control system
-
Renner D.B., Yamaguchi Y., Wada T., Handa H., Price D.H. A highly purified RNA polymerase II elongation control system. J. Biol. Chem. 276:2001;42601-42609.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 42601-42609
-
-
Renner, D.B.1
Yamaguchi, Y.2
Wada, T.3
Handa, H.4
Price, D.H.5
-
57
-
-
0036232590
-
Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA
-
Yamaguchi Y., Inukai N., Narita T., Wada T., Handa H. Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol. Cell Biol. 22:2002;2918-2927.
-
(2002)
Mol. Cell Biol.
, vol.22
, pp. 2918-2927
-
-
Yamaguchi, Y.1
Inukai, N.2
Narita, T.3
Wada, T.4
Handa, H.5
-
58
-
-
6644222520
-
Stimulation of RNA polymerase II elongation by hepatitis delta antigen
-
Yamaguchi Y., Filipovska J., Yano K., Furuya A., Inukai N., Narita T., Wada T., Sugimoto S., Konarska M.M., Handa H. Stimulation of RNA polymerase II elongation by hepatitis delta antigen. Science. 293:2001;124-127. • HDAg is shown to have a domain of weak sequence similarity to NELF-A, the largest subunit of NELF. In vitro experiments show that HDAg prevents transcriptional inhibition by DSIF/NELF by displacing NELF from RNAPII and furthermore that HDAg can strongly stimulate transcription.
-
(2001)
Science
, vol.293
, pp. 124-127
-
-
Yamaguchi, Y.1
Filipovska, J.2
Yano, K.3
Furuya, A.4
Inukai, N.5
Narita, T.6
Wada, T.7
Sugimoto, S.8
Konarska, M.M.9
Handa, H.10
-
59
-
-
0032534814
-
Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro
-
Wada T., Takagi T., Yamaguchi Y., Watanabe D., Handa H. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17:1998;7395-7403.
-
(1998)
EMBO J.
, vol.17
, pp. 7395-7403
-
-
Wada, T.1
Takagi, T.2
Yamaguchi, Y.3
Watanabe, D.4
Handa, H.5
-
60
-
-
0036713442
-
Novel domains and orthologues of eukaryotic transcription elongation factors
-
Ponting C.P. Novel domains and orthologues of eukaryotic transcription elongation factors. Nucleic Acids Res. 30:2002;3643-3652. • A detailed bioinformatic analysis of 12 elongation factors from S. cerevisiae, including the identification of potential bacterial and archaeal homologues.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 3643-3652
-
-
Ponting, C.P.1
-
61
-
-
0034676431
-
A regulator of transcriptional elongation controls vertebrate neuronal development
-
Guo S., Yamaguchi Y., Schilbach S., Wada T., Lee J., Goddard A., French D., Handa H., Rosenthal A. A regulator of transcriptional elongation controls vertebrate neuronal development. Nature. 408:2000;366-369.
-
(2000)
Nature
, vol.408
, pp. 366-369
-
-
Guo, S.1
Yamaguchi, Y.2
Schilbach, S.3
Wada, T.4
Lee, J.5
Goddard, A.6
French, D.7
Handa, H.8
Rosenthal, A.9
-
62
-
-
0035853736
-
Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase
-
Kim J.B., Sharp P.A. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase. J. Biol. Chem. 276:2001;12317-12323.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 12317-12323
-
-
Kim, J.B.1
Sharp, P.A.2
-
63
-
-
0342748478
-
Domains in the SPT5 protein that modulate its transcriptional regulatory properties
-
Ivanov D., Kwak Y.T., Guo J., Gaynor R.B. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol. Cell Biol. 20:2000;2970-2983.
-
(2000)
Mol. Cell Biol.
, vol.20
, pp. 2970-2983
-
-
Ivanov, D.1
Kwak, Y.T.2
Guo, J.3
Gaynor, R.B.4
-
64
-
-
0033515521
-
NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation
-
Yamaguchi Y., Takagi T., Wada T., Yano K., Furuya A., Sugimoto S., Hasegawa J., Handa H. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell. 97:1999;41-51.
-
(1999)
Cell
, vol.97
, pp. 41-51
-
-
Yamaguchi, Y.1
Takagi, T.2
Wada, T.3
Yano, K.4
Furuya, A.5
Sugimoto, S.6
Hasegawa, J.7
Handa, H.8
-
65
-
-
0029890667
-
Evidence that Spt6p controls chromatin structure by a direct interaction with histones
-
Bortvin A., Winston F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science. 272:1996;1473-1476.
-
(1996)
Science
, vol.272
, pp. 1473-1476
-
-
Bortvin, A.1
Winston, F.2
-
66
-
-
0035796454
-
Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN
-
Formosa T., Eriksson P., Wittmeyer J., Ginn J., Yu Y., Stillman D.J. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J. 20:2001;3506-3517.
-
(2001)
EMBO J.
, vol.20
, pp. 3506-3517
-
-
Formosa, T.1
Eriksson, P.2
Wittmeyer, J.3
Ginn, J.4
Yu, Y.5
Stillman, D.J.6
-
67
-
-
0035027953
-
A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription
-
Brewster N.K., Johnston G.C., Singer R.A. A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol. Cell Biol. 21:2001;3491-3502.
-
(2001)
Mol. Cell Biol.
, vol.21
, pp. 3491-3502
-
-
Brewster, N.K.1
Johnston, G.C.2
Singer, R.A.3
-
68
-
-
0033790999
-
Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation
-
Costa P.J., Arndt K.M. Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. Genetics. 156:2000;535-547.
-
(2000)
Genetics
, vol.156
, pp. 535-547
-
-
Costa, P.J.1
Arndt, K.M.2
-
69
-
-
0033566129
-
The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins
-
Orphanides G., Wu W.H., Lane W.S., Hampsey M., Reinberg D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature. 400:1999;284-288.
-
(1999)
Nature
, vol.400
, pp. 284-288
-
-
Orphanides, G.1
Wu, W.H.2
Lane, W.S.3
Hampsey, M.4
Reinberg, D.5
-
70
-
-
0036964090
-
Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: Polymerase passage may degrade chromatin structure
-
Formosa T., Ruone S., Adams M.D., Olsen A.E., Eriksson P., Yu Y., Rhoades A.R., Kaufman P.D., Stillman D.J. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics. 162:2002;1557-1571. • The FACT complex was first discovered by virtue of its ability to stimulate transcription elongation on chromatin assembled DNA in vitro. Here, yeast strains defective for FACT are shown to be particularly sensitive to alterations in histone levels, to mutations in the N-terminal tails of histones H3 and H4, and to mutations affecting several different acetyltransferases that modify the histone tails. The authors propose a role for FACT in the dissasembly and reassembly of chromatin as RNAPII traverses a gene.
-
(2002)
Genetics
, vol.162
, pp. 1557-1571
-
-
Formosa, T.1
Ruone, S.2
Adams, M.D.3
Olsen, A.E.4
Eriksson, P.5
Yu, Y.6
Rhoades, A.R.7
Kaufman, P.D.8
Stillman, D.J.9
-
71
-
-
0033854297
-
Genetic interactions between TFIIS and the Swi-Snf chromatin-remodeling complex
-
Davie J.K., Kane C.M. Genetic interactions between TFIIS and the Swi-Snf chromatin-remodeling complex. Mol. Cell Biol. 20:2000;5960-5973.
-
(2000)
Mol. Cell Biol.
, vol.20
, pp. 5960-5973
-
-
Davie, J.K.1
Kane, C.M.2
-
72
-
-
0032004953
-
Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae
-
Hartzog G.A., Wada T., Handa H., Winston F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12:1998;357-369.
-
(1998)
Genes Dev.
, vol.12
, pp. 357-369
-
-
Hartzog, G.A.1
Wada, T.2
Handa, H.3
Winston, F.4
-
73
-
-
0036203807
-
Nucleosome remodeling induced by RNA polymerase II: Loss of the H2A/H2B dimer during transcription
-
Kireeva M.L., Walter W., Tchernajenko V., Bondarenko V., Kashlev M., Studitsky V.M. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell. 9:2002;541-552. • Nucleosomes have long been known to block elongation by RNAPII. In this paper, the authors describe how mononucleosomes coupled to RNAPII elongation complexes block in vitro transcription at physiological ionic strength but not at elevated ionic strengths. Furthermore, when transcription did occur, a histone H2A/H2B dimer was displaced from the nucleosome, leaving behind a novel 'hexasome' structure. The authors suggest that elongation factors that interact with histones may play a part in the process.
-
(2002)
Mol. Cell
, vol.9
, pp. 541-552
-
-
Kireeva, M.L.1
Walter, W.2
Tchernajenko, V.3
Bondarenko, V.4
Kashlev, M.5
Studitsky, V.M.6
-
74
-
-
12244277380
-
SPN1, a conserved gene identified by suppression of a postrecruitment-defective yeast TATA-binding protein mutant
-
Fischbeck J.A., Kraemer S.M., Stargell L.A. SPN1, a conserved gene identified by suppression of a postrecruitment-defective yeast TATA-binding protein mutant. Genetics. 162:2002;1605-1616.
-
(2002)
Genetics
, vol.162
, pp. 1605-1616
-
-
Fischbeck, J.A.1
Kraemer, S.M.2
Stargell, L.A.3
-
75
-
-
0036928142
-
A role for chromatin remodeling in transcriptional termination by RNA polymerase II
-
Alén C., Kent N.A., Jones H.S., O'Sullivan J., Aranda A., Proudfoot N.J. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol. Cell. 10:2002;1441-1452.
-
(2002)
Mol. Cell
, vol.10
, pp. 1441-1452
-
-
Alén, C.1
Kent, N.A.2
Jones, H.S.3
O'Sullivan, J.4
Aranda, A.5
Proudfoot, N.J.6
|